Using the Grasshopper Optimization Algorithm for Fuzzy Classifier Design

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
R. O. Ostapenko, I. A. Hodashinsky, Yu. A. Shurygin
{"title":"Using the Grasshopper Optimization Algorithm for Fuzzy Classifier Design","authors":"R. O. Ostapenko,&nbsp;I. A. Hodashinsky,&nbsp;Yu. A. Shurygin","doi":"10.3103/S000510552306002X","DOIUrl":null,"url":null,"abstract":"<p>The paper describes three stages in the construction of a fuzzy classifier. The first refers to the formation of fuzzy rules, the second stage is feature selection, and the third stage is optimization of membership functions parameters. The influence of clustering methods on the efficiency of the formed fuzzy classifier rules was estimated by three different fitness functions. These functions were total variance, the Davies–Bouldin index, and the Calinski–Harabasz index. The grasshopper optimization algorithm was binarized using S- and V-shaped transformation functions for feature selection. The constructed classifiers have been tested on datasets from the KEEL repository.</p>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S000510552306002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper describes three stages in the construction of a fuzzy classifier. The first refers to the formation of fuzzy rules, the second stage is feature selection, and the third stage is optimization of membership functions parameters. The influence of clustering methods on the efficiency of the formed fuzzy classifier rules was estimated by three different fitness functions. These functions were total variance, the Davies–Bouldin index, and the Calinski–Harabasz index. The grasshopper optimization algorithm was binarized using S- and V-shaped transformation functions for feature selection. The constructed classifiers have been tested on datasets from the KEEL repository.

使用蚱蜢优化算法设计模糊分类器
摘要 本文介绍了构建模糊分类器的三个阶段。第一阶段是模糊规则的形成,第二阶段是特征选择,第三阶段是成员函数参数的优化。聚类方法对已形成的模糊分类规则效率的影响是通过三种不同的拟合函数来估算的。这些函数分别是总方差、戴维斯-博尔丁指数和卡林斯基-哈拉巴什指数。使用 S 型和 V 型变换函数对蚱蜢优化算法进行二值化,以选择特征。所构建的分类器已在 KEEL 数据库的数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信