Incorporation of ChatGPT and Other Large Language Models into a Graduate Level Computational Bioengineering Course

IF 2.3 4区 医学 Q3 BIOPHYSICS
Michael R. King, Adam M. Abdulrahman, Mark I. Petrovic, Patricia L. Poley, Sarah P. Hall, Surat Kulapatana, Zachary E. Lamantia
{"title":"Incorporation of ChatGPT and Other Large Language Models into a Graduate Level Computational Bioengineering Course","authors":"Michael R. King, Adam M. Abdulrahman, Mark I. Petrovic, Patricia L. Poley, Sarah P. Hall, Surat Kulapatana, Zachary E. Lamantia","doi":"10.1007/s12195-024-00793-3","DOIUrl":null,"url":null,"abstract":"<p>The remarkable capabilities of generative artificial intelligence and large language models (LLMs) such as ChatGPT have delighted users around the world. Educators have regarded these tools as either a cause for great concern, an opportunity to educate students on cutting-edge technology, or often some combination of the two. Throughout the Fall 2023 semester, we explored the use of ChatGPT (and Bard, among other LLMs) in a graduate level numerical and statistical methods course for PhD-level bioengineers. In this article we share examples of this ChatGPT content, our observations on what worked best in our course, and speculate on how bioengineering students may be best served by this technology in the future.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-024-00793-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The remarkable capabilities of generative artificial intelligence and large language models (LLMs) such as ChatGPT have delighted users around the world. Educators have regarded these tools as either a cause for great concern, an opportunity to educate students on cutting-edge technology, or often some combination of the two. Throughout the Fall 2023 semester, we explored the use of ChatGPT (and Bard, among other LLMs) in a graduate level numerical and statistical methods course for PhD-level bioengineers. In this article we share examples of this ChatGPT content, our observations on what worked best in our course, and speculate on how bioengineering students may be best served by this technology in the future.

Abstract Image

将 ChatGPT 和其他大型语言模型纳入计算生物工程研究生课程
生成式人工智能和大型语言模型(LLMs)(如 ChatGPT)的卓越功能令世界各地的用户欣喜若狂。教育工作者认为,这些工具要么引起了极大的关注,要么是向学生传授前沿技术的机会,或者往往是两者的结合。在 2023 年秋季学期,我们在为生物工程博士开设的研究生水平数值和统计方法课程中探索了 ChatGPT(以及 Bard 和其他 LLM)的使用。在这篇文章中,我们将分享 ChatGPT 内容的示例、我们对课程中最有效方法的观察,并推测生物工程专业的学生未来可能如何利用这项技术获得最佳服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
3.60%
发文量
30
审稿时长
>12 weeks
期刊介绍: The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas: Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example. Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions. Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress. Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信