Lisa Ambrosi, Vanessa Berger, Georg Rainer, Nikolaus Obojes, Ulrike Tappeiner, Erich Tasser, Georg Leitinger
{"title":"Spatiotemporal variability of evapotranspiration in Alpine grasslands and its biotic and abiotic drivers","authors":"Lisa Ambrosi, Vanessa Berger, Georg Rainer, Nikolaus Obojes, Ulrike Tappeiner, Erich Tasser, Georg Leitinger","doi":"10.1002/eco.2633","DOIUrl":null,"url":null,"abstract":"<p>To gain a deeper understanding of the water balances of Alpine grassland ecosystems, it is crucial to know the abiotic and biotic drivers of evapotranspiration. The abiotic drivers are very heterogeneous in mountain regions because elevation, slope and aspect control incoming R<sub>s</sub>, and atmospheric layering affect air temperature, humidity and wind distribution. In a study with 24 lysimeter plots distributed over a study area of approx. 300 km<sup>2</sup> in the Eastern Alps, we covered a wide range of topographic conditions. We investigated the effects of abiotic drivers on evapotranspiration by measuring evaporation from a free-water body (E<sub>w</sub>). For the biological modulation of crop evapotranspiration (ET<sub>c</sub>), we analysed two different grassland types (at peak biomass and at low biomass) and calculated the respective crop coefficients (K<sub>c</sub>). Results showed that primarily physical drivers such as the accumulated solar radiation from sunrise to measurement (R<sub>s</sub>_acc), followed by atmospheric pressure (P), wind speed (u) and vapour pressure deficit (VPD) influence both E<sub>w</sub> and ET<sub>c</sub>. Moreover, ET<sub>c</sub> is also significantly influenced by standing biomass and the grassland type (i.e., resource use strategies of the vegetation types) and by the geographic location along the valley (i.e., entrance, middle and head of the valley). We suppose plant stress and/or ground winds to be the underlying factor for the significance of the geographic location, yet further research is needed. The current study helps towards a better understanding of the water balance in alpine grassland ecosystems, but we also show that some spatial drivers cannot yet be adequately addressed.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2633","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2633","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To gain a deeper understanding of the water balances of Alpine grassland ecosystems, it is crucial to know the abiotic and biotic drivers of evapotranspiration. The abiotic drivers are very heterogeneous in mountain regions because elevation, slope and aspect control incoming Rs, and atmospheric layering affect air temperature, humidity and wind distribution. In a study with 24 lysimeter plots distributed over a study area of approx. 300 km2 in the Eastern Alps, we covered a wide range of topographic conditions. We investigated the effects of abiotic drivers on evapotranspiration by measuring evaporation from a free-water body (Ew). For the biological modulation of crop evapotranspiration (ETc), we analysed two different grassland types (at peak biomass and at low biomass) and calculated the respective crop coefficients (Kc). Results showed that primarily physical drivers such as the accumulated solar radiation from sunrise to measurement (Rs_acc), followed by atmospheric pressure (P), wind speed (u) and vapour pressure deficit (VPD) influence both Ew and ETc. Moreover, ETc is also significantly influenced by standing biomass and the grassland type (i.e., resource use strategies of the vegetation types) and by the geographic location along the valley (i.e., entrance, middle and head of the valley). We suppose plant stress and/or ground winds to be the underlying factor for the significance of the geographic location, yet further research is needed. The current study helps towards a better understanding of the water balance in alpine grassland ecosystems, but we also show that some spatial drivers cannot yet be adequately addressed.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.