Xihong Yang, Yiqi Wang, Yue Liu, Yi Wen, Lingyuan Meng, Sihang Zhou, Xinwang Liu, En Zhu
{"title":"Mixed Graph Contrastive Network for Semi-Supervised Node Classification","authors":"Xihong Yang, Yiqi Wang, Yue Liu, Yi Wen, Lingyuan Meng, Sihang Zhou, Xinwang Liu, En Zhu","doi":"10.1145/3641549","DOIUrl":null,"url":null,"abstract":"<p>Graph Neural Networks (GNNs) have achieved promising performance in semi-supervised node classification in recent years. However, the problem of insufficient supervision, together with representation collapse, largely limits the performance of the GNNs in this field. To alleviate the collapse of node representations in semi-supervised scenario, we propose a novel graph contrastive learning method, termed <b>M</b>ixed <b>G</b>raph <b>C</b>ontrastive <b>N</b>etwork (MGCN). In our method, we improve the discriminative capability of the latent embeddings by an interpolation-based augmentation strategy and a correlation reduction mechanism. Specifically, we first conduct the interpolation-based augmentation in the latent space and then force the prediction model to change linearly between samples. Second, we enable the learned network to tell apart samples across two interpolation-perturbed views through forcing the correlation matrix across views to approximate an identity matrix. By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discriminative representation learning. Extensive experimental results on six datasets demonstrate the effectiveness and the generality of MGCN compared to the existing state-of-the-art methods. The code of MGCN is available at https://github.com/xihongyang1999/MGCN on Github.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"33 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641549","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Graph Neural Networks (GNNs) have achieved promising performance in semi-supervised node classification in recent years. However, the problem of insufficient supervision, together with representation collapse, largely limits the performance of the GNNs in this field. To alleviate the collapse of node representations in semi-supervised scenario, we propose a novel graph contrastive learning method, termed Mixed Graph Contrastive Network (MGCN). In our method, we improve the discriminative capability of the latent embeddings by an interpolation-based augmentation strategy and a correlation reduction mechanism. Specifically, we first conduct the interpolation-based augmentation in the latent space and then force the prediction model to change linearly between samples. Second, we enable the learned network to tell apart samples across two interpolation-perturbed views through forcing the correlation matrix across views to approximate an identity matrix. By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discriminative representation learning. Extensive experimental results on six datasets demonstrate the effectiveness and the generality of MGCN compared to the existing state-of-the-art methods. The code of MGCN is available at https://github.com/xihongyang1999/MGCN on Github.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.