miR-92a-3p promotes pulmonary fibrosis progression by regulating KLF2-mediated endothelial-to-mesenchymal transition

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sisi Pang, Bo Chen, Yan Li, Shuangshuang Wu, Lei Chen
{"title":"miR-92a-3p promotes pulmonary fibrosis progression by regulating KLF2-mediated endothelial-to-mesenchymal transition","authors":"Sisi Pang, Bo Chen, Yan Li, Shuangshuang Wu, Lei Chen","doi":"10.1007/s10616-024-00617-2","DOIUrl":null,"url":null,"abstract":"<p>Pulmonary fibrosis (PF) is a chronic lung disease that has a poor prognosis and a serious impact on the quality of life of patients. Here, we investigated the potential role of miR-92a-3p in PF. The mRNA level of miR-92a-3p was significantly increased in both the lung tissues of bleomycin (BLM)--treated mice and pulmonary microvascular endothelial cells (PMVECs). Overexpressing miR-92a-3p increased the mRNA and protein levels of α‑SMA, vimentin, and Col-1 but downregulated E-cadherin. Additionally, the protein and mRNA expression levels of KLF2 were significantly decreased in the lung tissues of BLM-treated mice, suggesting that KLF2 participated in the progression of BLM-induced PF. Downregulating miR-92a-3p upregulated the expression of KLF2 and inhibited the endothelial-to-mesenchymal transition (EndoMT) process, thus alleviating PF in vivo. Altogether, a miR-92a-3p deficiency could significantly reduce the development of myofibroblasts and ameliorate PF progression.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"20 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00617-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary fibrosis (PF) is a chronic lung disease that has a poor prognosis and a serious impact on the quality of life of patients. Here, we investigated the potential role of miR-92a-3p in PF. The mRNA level of miR-92a-3p was significantly increased in both the lung tissues of bleomycin (BLM)--treated mice and pulmonary microvascular endothelial cells (PMVECs). Overexpressing miR-92a-3p increased the mRNA and protein levels of α‑SMA, vimentin, and Col-1 but downregulated E-cadherin. Additionally, the protein and mRNA expression levels of KLF2 were significantly decreased in the lung tissues of BLM-treated mice, suggesting that KLF2 participated in the progression of BLM-induced PF. Downregulating miR-92a-3p upregulated the expression of KLF2 and inhibited the endothelial-to-mesenchymal transition (EndoMT) process, thus alleviating PF in vivo. Altogether, a miR-92a-3p deficiency could significantly reduce the development of myofibroblasts and ameliorate PF progression.

Abstract Image

miR-92a-3p 通过调控 KLF2 介导的内皮细胞向间质转化促进肺纤维化进展
肺纤维化(PF)是一种慢性肺部疾病,预后不良,严重影响患者的生活质量。在此,我们研究了 miR-92a-3p 在肺纤维化中的潜在作用。在博莱霉素(BLM)处理过的小鼠肺组织和肺微血管内皮细胞(PMVECs)中,miR-92a-3p的mRNA水平均显著升高。过表达 miR-92a-3p 会增加 α-SMA、波形蛋白和 Col-1 的 mRNA 和蛋白水平,但会下调 E-cadherin。此外,BLM 处理的小鼠肺组织中 KLF2 的蛋白和 mRNA 表达水平显著下降,表明 KLF2 参与了 BLM 诱导的 PF 的进展。下调 miR-92a-3p 可以上调 KLF2 的表达,抑制内皮细胞向间质转化(EndoMT)过程,从而缓解体内 PF 的病情。总之,miR-92a-3p 的缺乏可显著减少肌成纤维细胞的发展,并改善 PF 的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信