{"title":"Surface-dominant micro/nanofluidics for efficient green energy conversion","authors":"Cong Wang, Eunseok Seo, Jungyul Park","doi":"10.1063/5.0190934","DOIUrl":null,"url":null,"abstract":"Green energy conversion in aqueous systems has attracted considerable interest owing to the sustainable clean energy demand resulting from population and economic growth and urbanization, as well as the significant potential energy from water resources and other regenerative sources coupled with fluids. In particular, molecular motion based on intrinsic micro/nanofluidic phenomena at the liquid–solid interface (LSI) is crucial for efficient and sustainable green energy conversion. The electrical double layer is the main factor affecting transport, interaction between molecules and surfaces, non-uniform ion distribution, synthesis, stimulated reactions, and motion by external renewable resources in both closed nanoconfinement and open surfaces. In this review, we summarize the state-of-the-art progress in physical and chemical reaction-based green energy conversion in LSI, including nanoscale fabrication, key mechanisms, applications, and limitations for practical implementation. The prospects for resolving critical challenges in this field and inspiring other promising research areas in the infancy stage (studying chemical and biological dynamics at the single-molecule level and nanofluidic neuromorphic computing) are also discussed.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0190934","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Green energy conversion in aqueous systems has attracted considerable interest owing to the sustainable clean energy demand resulting from population and economic growth and urbanization, as well as the significant potential energy from water resources and other regenerative sources coupled with fluids. In particular, molecular motion based on intrinsic micro/nanofluidic phenomena at the liquid–solid interface (LSI) is crucial for efficient and sustainable green energy conversion. The electrical double layer is the main factor affecting transport, interaction between molecules and surfaces, non-uniform ion distribution, synthesis, stimulated reactions, and motion by external renewable resources in both closed nanoconfinement and open surfaces. In this review, we summarize the state-of-the-art progress in physical and chemical reaction-based green energy conversion in LSI, including nanoscale fabrication, key mechanisms, applications, and limitations for practical implementation. The prospects for resolving critical challenges in this field and inspiring other promising research areas in the infancy stage (studying chemical and biological dynamics at the single-molecule level and nanofluidic neuromorphic computing) are also discussed.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...