Global Well-Posedness to the n-Dimensional Compressible Oldroyd-B Model Without Damping Mechanism

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoping Zhai, Zhi-Min Chen
{"title":"Global Well-Posedness to the n-Dimensional Compressible Oldroyd-B Model Without Damping Mechanism","authors":"Xiaoping Zhai, Zhi-Min Chen","doi":"10.1007/s10884-023-10346-3","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the global well-posedness to the compressible Oldroyd-B model without a damping term in the stress tensor equation. By exploiting the intrinsic structure of the equations and introducing several new quantities for the density, the velocity and the divergence of the stress tensor, we overcome the difficulty of the lack of dissipation for the density and the stress tensor, and construct unique global solutions to this system with initial data in critical Besov spaces. As a byproduct, we obtain the optimal time decay rates of the solutions by using the pure energy argument. A similar result can be also proved for the compressible viscoelastic system without “div–curl\" structure.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-023-10346-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with the global well-posedness to the compressible Oldroyd-B model without a damping term in the stress tensor equation. By exploiting the intrinsic structure of the equations and introducing several new quantities for the density, the velocity and the divergence of the stress tensor, we overcome the difficulty of the lack of dissipation for the density and the stress tensor, and construct unique global solutions to this system with initial data in critical Besov spaces. As a byproduct, we obtain the optimal time decay rates of the solutions by using the pure energy argument. A similar result can be also proved for the compressible viscoelastic system without “div–curl" structure.

无阻尼机制的 n 维可压缩奥尔德罗伊德-B 模型的全局拟合优度
我们关注的是应力张量方程中不包含阻尼项的可压缩 Oldroyd-B 模型的全局良好求解。通过利用方程的内在结构并为密度、速度和应力张量的发散引入几个新量,我们克服了密度和应力张量缺乏耗散的困难,并在临界贝索夫空间中构建了该系统初始数据的唯一全局解。作为副产品,我们利用纯能量论证得到了解的最佳时间衰减率。对于没有 "div-curl "结构的可压缩粘弹性系统,也可以证明类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信