Integer flows on triangularly connected signed graphs

IF 0.9 3区 数学 Q2 MATHEMATICS
Liangchen Li, Chong Li, Rong Luo, Cun-Quan Zhang
{"title":"Integer flows on triangularly connected signed graphs","authors":"Liangchen Li,&nbsp;Chong Li,&nbsp;Rong Luo,&nbsp;Cun-Quan Zhang","doi":"10.1002/jgt.23076","DOIUrl":null,"url":null,"abstract":"<p>A triangle-path in a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a sequence of distinct triangles <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>T</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${T}_{1},{T}_{2},\\ldots ,{T}_{m}$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that for any <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n \n <mo>,</mo>\n \n <mi>j</mi>\n </mrow>\n <annotation> $i,j$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo>&lt;</mo>\n \n <mi>j</mi>\n \n <mo>≤</mo>\n \n <mi>m</mi>\n </mrow>\n <annotation> $1\\le i\\lt j\\le m$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∩</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>T</mi>\n <mrow>\n <mi>i</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $| E({T}_{i})\\cap E({T}_{i+1})| =1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∩</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>j</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>∅</mi>\n </mrow>\n <annotation> $E({T}_{i})\\cap E({T}_{j})=\\varnothing $</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>j</mi>\n \n <mo>&gt;</mo>\n \n <mi>i</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $j\\gt i+1$</annotation>\n </semantics></math>. A connected graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is triangularly connected if for any two nonparallel edges <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>′</mo>\n </mrow>\n <annotation> $e^{\\prime} $</annotation>\n </semantics></math> there is a triangle-path <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>1</mn>\n </msub>\n \n <msub>\n <mi>T</mi>\n \n <mn>2</mn>\n </msub>\n \n <mi>⋯</mi>\n \n <msub>\n <mi>T</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${T}_{1}{T}_{2}\\cdots {T}_{m}$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>∈</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>T</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e\\in E({T}_{1})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>′</mo>\n \n <mo>∈</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>m</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e^{\\prime} \\in E({T}_{m})$</annotation>\n </semantics></math>. For ordinary graphs, Fan et al. characterize all triangularly connected graphs that admit nowhere-zero 3-flows or 4-flows. Corollaries of this result include the integer flow of some families of ordinary graphs, such as locally connected graphs due to Lai and some types of products of graphs due to Imrich et al. In this paper, Fan's result for triangularly connected graphs is further extended to signed graphs. We proved that a flow-admissible triangularly connected signed graph admits a nowhere-zero 4-flow if and only if it is not the wheel <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n <annotation> ${W}_{5}$</annotation>\n </semantics></math> associated with a specific signature. Moreover, this result is sharp since there are infinitely many unbalanced triangularly connected signed graphs admitting a nowhere-zero 4-flow but no 3-flow.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 2","pages":"257-272"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23076","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A triangle-path in a graph G $G$ is a sequence of distinct triangles T 1 , T 2 , , T m ${T}_{1},{T}_{2},\ldots ,{T}_{m}$ in G $G$ such that for any i , j $i,j$ with 1 i < j m $1\le i\lt j\le m$ , E ( T i ) E ( T i + 1 ) = 1 $| E({T}_{i})\cap E({T}_{i+1})| =1$ and E ( T i ) E ( T j ) = $E({T}_{i})\cap E({T}_{j})=\varnothing $ if j > i + 1 $j\gt i+1$ . A connected graph G $G$ is triangularly connected if for any two nonparallel edges e $e$ and e $e^{\prime} $ there is a triangle-path T 1 T 2 T m ${T}_{1}{T}_{2}\cdots {T}_{m}$ such that e E ( T 1 ) $e\in E({T}_{1})$ and e E ( T m ) $e^{\prime} \in E({T}_{m})$ . For ordinary graphs, Fan et al. characterize all triangularly connected graphs that admit nowhere-zero 3-flows or 4-flows. Corollaries of this result include the integer flow of some families of ordinary graphs, such as locally connected graphs due to Lai and some types of products of graphs due to Imrich et al. In this paper, Fan's result for triangularly connected graphs is further extended to signed graphs. We proved that a flow-admissible triangularly connected signed graph admits a nowhere-zero 4-flow if and only if it is not the wheel W 5 ${W}_{5}$ associated with a specific signature. Moreover, this result is sharp since there are infinitely many unbalanced triangularly connected signed graphs admitting a nowhere-zero 4-flow but no 3-flow.

三角形连接有符号图上的整数流
图 G$G$ 中的三角形路径是一连串不同的三角形 T1,T2,......。,Tm${T}_{1},{T}_{2},\ldots,{T}_{m}$在 G$G$中,对于任意 i,j$i,j$,1≤i<;j≤m$1\le i\lt j\le m$, ∣E(Ti)∩E(Ti+1)∣=1$| E({T}_{i})\cap E({T}_{i+1})| =1$ 和 E(Ti)∩E(Tj)=∅$E({T}_{i})\cap E({T}_{j})=\varnothing $ if j>i+1$j\gt i+1$.如果对于任意两条不平行的边 e$e$ 和 e′$e^{prime} $ 有一条三角形-路径 T1T2⋯Tm${T}_{1}{T}_{2}\cdots {T}_{m}$ ,使得 e∈E(T1)$e\in E({T}_{1})$ 和 e′∈E(Tm)$e^{prime}\in E({T}_{m})$.对于普通图,Fan 等人描述了所有允许无处为零的 3 流或 4 流的三角形连接图。这一结果的推论包括一些普通图族的整数流,如 Lai 提出的局部连通图和 Imrich 等人提出的某些类型的图积。我们证明,当且仅当一个流动可容许的三角形连接有符号图不是与特定签名相关的轮 W5${W}_{5}$时,它才容许一个无处为零的 4 流。此外,这个结果是尖锐的,因为有无限多的不平衡三角形连接有符号图允许无处为零的 4 流,但不允许 3 流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信