Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tiangang Cui, Gianluca Detommaso, Robert Scheichl
{"title":"Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems","authors":"Tiangang Cui, Gianluca Detommaso, Robert Scheichl","doi":"10.1088/1361-6420/ad1e2c","DOIUrl":null,"url":null,"abstract":"We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui <italic toggle=\"yes\">et al</italic> 2016) and the multilevel MCMC (Dodwell <italic toggle=\"yes\">et al</italic> 2015) to explore the hierarchy of posterior distributions. This integration offers several advantages: First, DILI-MCMC employs an intrinsic <italic toggle=\"yes\">likelihood-informed subspace</italic> (LIS) (Cui <italic toggle=\"yes\">et al</italic> 2014)—which involves a number of forward and adjoint model simulations—to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a <italic toggle=\"yes\">Rayleigh–Ritz procedure</italic> to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad1e2c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui et al 2016) and the multilevel MCMC (Dodwell et al 2015) to explore the hierarchy of posterior distributions. This integration offers several advantages: First, DILI-MCMC employs an intrinsic likelihood-informed subspace (LIS) (Cui et al 2014)—which involves a number of forward and adjoint model simulations—to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a Rayleigh–Ritz procedure to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.
用于大规模逆问题的多层次维度独立似然信息 MCMC
我们提出了一种与维度无关的似然信息(DILI)MCMC(Cui 等人,2016 年)和多级 MCMC(Dodwell 等人,2015 年)的非难整合,以探索后验分布的层次结构。这种整合具有几个优势:首先,DILI-MCMC 采用内在似然信息子空间(LIS)(Cui 等人,2014 年)--其中涉及大量前向和邻接模型模拟--来设计加速算子加权建议。通过利用离散参数和离散前向模型的多层次结构,我们设计了一种 Rayleigh-Ritz 程序,以显著减少构建 LIS 和使用 DILI 建议的计算量。其次,由此产生的 DILI-MCMC 可以大幅提高各层次 MCMC 的采样效率,从而在 CPU 时间固定的情况下降低多层次算法的积分误差。数值结果证实了多级 DILI 方法提高了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信