Minimum degree stability of C 2 k + 1 ${C}_{2k+1}$ -free graphs

Pub Date : 2024-02-11 DOI:10.1002/jgt.23086
Xiaoli Yuan, Yuejian Peng
{"title":"Minimum degree stability of \n \n \n \n C\n \n 2\n k\n +\n 1\n \n \n \n ${C}_{2k+1}$\n -free graphs","authors":"Xiaoli Yuan,&nbsp;Yuejian Peng","doi":"10.1002/jgt.23086","DOIUrl":null,"url":null,"abstract":"<p>We consider the minimum degree stability of graphs forbidding odd cycles: What is the tight bound on the minimum degree to guarantee that the structure of a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${C}_{2k+1}$</annotation>\n </semantics></math>-free graph inherits from the extremal graph (a balanced complete bipartite graph)? Andrásfai, Erdős, and Sós showed that if a <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <mtext>…</mtext>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n \n <mo>}</mo>\n </mrow>\n <annotation> $\\{{C}_{3},{C}_{5},\\ldots ,{C}_{2k+1}\\}$</annotation>\n </semantics></math>-free graph on <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices has minimum degree greater than <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>2</mn>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>3</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\frac{2}{2k+3}n$</annotation>\n </semantics></math>, then it is bipartite. Häggkvist showed that for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $k\\in \\{1,2,3,4\\}$</annotation>\n </semantics></math>, if a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${C}_{2k+1}$</annotation>\n </semantics></math>-free graph on <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices has minimum degree greater than <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>2</mn>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>3</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\frac{2}{2k+3}n$</annotation>\n </semantics></math>, then it is bipartite. Häggkvist also pointed out that this result cannot be extended to <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n <annotation> $k\\ge 5$</annotation>\n </semantics></math>. In this paper, we give a complete answer for any <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n <annotation> $k\\ge 5$</annotation>\n </semantics></math>. We show that if <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n <annotation> $k\\ge 5$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${C}_{2k+1}$</annotation>\n </semantics></math>-free graph with <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>6</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\delta (G)\\ge \\frac{n}{6}+1$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is bipartite, and the bound <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mi>n</mi>\n \n <mn>6</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\frac{n}{6}+1$</annotation>\n </semantics></math> is tight.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the minimum degree stability of graphs forbidding odd cycles: What is the tight bound on the minimum degree to guarantee that the structure of a C 2 k + 1 ${C}_{2k+1}$ -free graph inherits from the extremal graph (a balanced complete bipartite graph)? Andrásfai, Erdős, and Sós showed that if a { C 3 , C 5 , , C 2 k + 1 } $\{{C}_{3},{C}_{5},\ldots ,{C}_{2k+1}\}$ -free graph on n $n$ vertices has minimum degree greater than 2 2 k + 3 n $\frac{2}{2k+3}n$ , then it is bipartite. Häggkvist showed that for k { 1 , 2 , 3 , 4 } $k\in \{1,2,3,4\}$ , if a C 2 k + 1 ${C}_{2k+1}$ -free graph on n $n$ vertices has minimum degree greater than 2 2 k + 3 n $\frac{2}{2k+3}n$ , then it is bipartite. Häggkvist also pointed out that this result cannot be extended to k 5 $k\ge 5$ . In this paper, we give a complete answer for any k 5 $k\ge 5$ . We show that if k 5 $k\ge 5$ and G $G$ is an n $n$ -vertex C 2 k + 1 ${C}_{2k+1}$ -free graph with δ ( G ) n 6 + 1 $\delta (G)\ge \frac{n}{6}+1$ , then G $G$ is bipartite, and the bound n 6 + 1 $\frac{n}{6}+1$ is tight.

分享
查看原文
无 C 2 k + 1 图形的最小度稳定性
我们考虑的是禁止奇数循环的图的最小度稳定性:要保证不含 C2k+1${C}_{2k+1}$ 的图的结构继承于极值图(平衡的完整二叉图),最小度数的严格约束是什么?Andrásfai、Erdős 和 Sós 发现,如果 n$n$ 个顶点上的{C3,C5,...,C2k+1}${{C}_{3},{C}_{5},\ldots ,{C}_{2k+1}\}$ 无顶图的最小度大于 22k+3n$/frac{2}{2k+3}n$,那么它是双向图。Häggkvist 证明了对于 k∈{1,2,3,4}$k\in \{1,2,3,4/}$,如果 n$n$ 个顶点上的无 C2k+1${C}_{2k+1}$ 图的最小度大于 22k+3n$/frac{2}{2k+3}n$,那么它是双方形的。海格奎斯特还指出,这一结果无法扩展到 k≥5$k\ge 5$。在本文中,我们给出了任意 k≥5$k\ge 5$ 的完整答案。我们证明,如果 k≥5$k\ge 5$ 并且 G$G$ 是一个 n$n$-vertex C2k+1${C}_{2k+1}$-free graph,δ(G)≥n6+1$\delta (G)\ge \frac{n}{6}+1$,那么 G$G$ 是双分部图,并且约束 n6+1$\frac{n}{6}+1$ 是紧密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信