A rigid analytic proof that the Abel–Jacobi map extends to compact-type models

Taylor Dupuy, Joseph Rabinoff
{"title":"A rigid analytic proof that the Abel–Jacobi map extends to compact-type models","authors":"Taylor Dupuy, Joseph Rabinoff","doi":"10.4153/s0008439524000031","DOIUrl":null,"url":null,"abstract":"<p>Let <span>K</span> be a non-Archimedean valued field with valuation ring <span>R</span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240207131109559-0437:S0008439524000031:S0008439524000031_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C_\\eta $</span></span></img></span></span> be a <span>K</span>-curve with compact-type reduction, so its Jacobian <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240207131109559-0437:S0008439524000031:S0008439524000031_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$J_\\eta $</span></span></img></span></span> extends to an abelian <span>R</span>-scheme <span>J</span>. We prove that an Abel–Jacobi map <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240207131109559-0437:S0008439524000031:S0008439524000031_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\iota \\colon C_\\eta \\to J_\\eta $</span></span></img></span></span> extends to a morphism <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240207131109559-0437:S0008439524000031:S0008439524000031_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C\\to J$</span></span></img></span></span>, where <span>C</span> is a compact-type <span>R</span>-model of <span>J</span>, and we show this is a closed immersion when the special fiber of <span>C</span> has no rational components. To do so, we apply a rigid-analytic “fiberwise” criterion for a morphism to extend to integral models, and geometric results of Bosch and Lütkebohmert on the analytic structure of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240207131109559-0437:S0008439524000031:S0008439524000031_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$J_\\eta $</span></span></img></span></span>.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let K be a non-Archimedean valued field with valuation ring R. Let Abstract Image$C_\eta $ be a K-curve with compact-type reduction, so its Jacobian Abstract Image$J_\eta $ extends to an abelian R-scheme J. We prove that an Abel–Jacobi map Abstract Image$\iota \colon C_\eta \to J_\eta $ extends to a morphism Abstract Image$C\to J$, where C is a compact-type R-model of J, and we show this is a closed immersion when the special fiber of C has no rational components. To do so, we apply a rigid-analytic “fiberwise” criterion for a morphism to extend to integral models, and geometric results of Bosch and Lütkebohmert on the analytic structure of Abstract Image$J_\eta $.

阿贝尔-雅可比图延伸至紧凑型模型的刚性解析证明
让 $C_\eta $ 是一个具有紧凑型还原的 K 曲线,所以它的雅各比 $J_\eta $ 延伸到一个非良性 R 方案 J。我们证明了一个阿贝尔-雅可比映射 $\iota \colon C_\eta \to J_\eta $ 延伸到一个形变 $C\to J$,其中 C 是 J 的紧凑型 R 模型,并且我们证明了当 C 的特殊纤维没有有理分量时,这是一个封闭的浸入。为此,我们应用了一个刚性-解析的 "纤维向 "标准来判断一个态是否扩展到积分模型,以及博世和吕特克伯默特关于 $J\_eta $ 解析结构的几何结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信