Yi Zhang, Xiaofang Chen, Xiaoyi Xie, Dong Li, Yuxiu Fan, Bin Huang, Xiupei Yang
{"title":"Research Progress in the Detection of Aflatoxin B1 Based on Aptamers","authors":"Yi Zhang, Xiaofang Chen, Xiaoyi Xie, Dong Li, Yuxiu Fan, Bin Huang, Xiupei Yang","doi":"10.2174/0115734110288673240201055400","DOIUrl":null,"url":null,"abstract":": Aflatoxin B1 is highly toxic, mutagenic, teratogenic, and carcinogenic and is a class I carcinogen. Peanuts, cotton, and corn may be affected by AFB1 during cultivation, which can seriously jeopardize human health. Developing a simple, sensitive, and selective method for detecting AFB1 is imminent. Aptamers are obtained through in vitro screening of ligands by single-stranded oligonucleotides (DNA or RNA) through exponential enrichment (SELEX) technology. As emerging highly selective recognition molecules, they have the advantages of strong affinity, good stability, and strong specificity. Because it does not have the function of signal conversion, it cannot produce physicochemical signals that can be detected in the process of specific binding with target molecules, so it is necessary to convert the process of specific binding of aptamers to target molecules into a process of easily detectable physicochemical signal changes. According to different conversion methods, aptamer biosensors are divided into electrochemical aptamer sensors, fluorescent aptamer sensors, colorimetric aptamer sensors, surface Raman-enhanced aptamer sensors, and so on. Herein, the recent progress and application of aflatoxin B1 detection by nucleic acid aptamer biosensors based on the above signals are reviewed, and the future development prospects and challenges of this kind of biosensor are summarized.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"5 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110288673240201055400","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
: Aflatoxin B1 is highly toxic, mutagenic, teratogenic, and carcinogenic and is a class I carcinogen. Peanuts, cotton, and corn may be affected by AFB1 during cultivation, which can seriously jeopardize human health. Developing a simple, sensitive, and selective method for detecting AFB1 is imminent. Aptamers are obtained through in vitro screening of ligands by single-stranded oligonucleotides (DNA or RNA) through exponential enrichment (SELEX) technology. As emerging highly selective recognition molecules, they have the advantages of strong affinity, good stability, and strong specificity. Because it does not have the function of signal conversion, it cannot produce physicochemical signals that can be detected in the process of specific binding with target molecules, so it is necessary to convert the process of specific binding of aptamers to target molecules into a process of easily detectable physicochemical signal changes. According to different conversion methods, aptamer biosensors are divided into electrochemical aptamer sensors, fluorescent aptamer sensors, colorimetric aptamer sensors, surface Raman-enhanced aptamer sensors, and so on. Herein, the recent progress and application of aflatoxin B1 detection by nucleic acid aptamer biosensors based on the above signals are reviewed, and the future development prospects and challenges of this kind of biosensor are summarized.
期刊介绍:
Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.