V. Tomkus, M. Mackevičiūtė, J. Dudutis, V. Girdauskas, M. Abedi-Varaki, P. Gečys, G. Račiukaitis
{"title":"Laser-machined two-stage nozzle optimised for laser wakefield acceleration","authors":"V. Tomkus, M. Mackevičiūtė, J. Dudutis, V. Girdauskas, M. Abedi-Varaki, P. Gečys, G. Račiukaitis","doi":"10.1017/s0022377824000059","DOIUrl":null,"url":null,"abstract":"In this paper, the modelling and manufacturing of a two-stage supersonic gas jet nozzle enabling the formation of adaptive plasma concentration profiles for injection and acceleration of electrons using few-cycle laser beams are presented. The stages are modelled using the rhoSimpleFoam algorithm of the OpenFOAM computational fluid dynamics software. The first 200–300 <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\rm \\mu}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000059_inline2A1.png\" /> </jats:alternatives> </jats:inline-formula>m diameter nozzle stage is dedicated to 1 % N<jats:sub>2</jats:sub> + He gas jet formation and electron injection. By varying the pressure between the first and second stages of the injectors, the electron injection location could be adjusted, and the maximum acceleration distance could be ensured. By changing the concentration of the nitrogen in the gas mixture, the charge of the accelerated electrons could be controlled. The second nozzle stage is designed for acceleration in fully ionised He or hydrogen gas and forms the optimal plasma concentration for bubble formation depending on the laser pulse energy, duration and focused beam diameter. In order to reduce the diameter of the plasma profile formed by the first nozzle and the concentration drop gap between the two nozzles, a one-side straight section was introduced in the first nozzle. The shock wave reflected from the straight section of the wall propagates parallel to the shock wave of the intersecting supersonic jets and ensures a minimal gap between the jets. The second-stage longitudinal plasma concentration profile could have an increasing gas density gradient to compensate for dephasing between the electron bunch and the plasma wave due to wave shortening with increasing plasma concentration.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"12 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000059","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the modelling and manufacturing of a two-stage supersonic gas jet nozzle enabling the formation of adaptive plasma concentration profiles for injection and acceleration of electrons using few-cycle laser beams are presented. The stages are modelled using the rhoSimpleFoam algorithm of the OpenFOAM computational fluid dynamics software. The first 200–300 ${\rm \mu}$m diameter nozzle stage is dedicated to 1 % N2 + He gas jet formation and electron injection. By varying the pressure between the first and second stages of the injectors, the electron injection location could be adjusted, and the maximum acceleration distance could be ensured. By changing the concentration of the nitrogen in the gas mixture, the charge of the accelerated electrons could be controlled. The second nozzle stage is designed for acceleration in fully ionised He or hydrogen gas and forms the optimal plasma concentration for bubble formation depending on the laser pulse energy, duration and focused beam diameter. In order to reduce the diameter of the plasma profile formed by the first nozzle and the concentration drop gap between the two nozzles, a one-side straight section was introduced in the first nozzle. The shock wave reflected from the straight section of the wall propagates parallel to the shock wave of the intersecting supersonic jets and ensures a minimal gap between the jets. The second-stage longitudinal plasma concentration profile could have an increasing gas density gradient to compensate for dephasing between the electron bunch and the plasma wave due to wave shortening with increasing plasma concentration.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.