T. Van Doorsselaere, N. Magyar, M.V. Sieyra, M. Goossens
{"title":"The magnetohydrodynamic equations in terms of waveframe variables","authors":"T. Van Doorsselaere, N. Magyar, M.V. Sieyra, M. Goossens","doi":"10.1017/s0022377824000126","DOIUrl":null,"url":null,"abstract":"Generalising the Elsässer variables, we introduce the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000126_inline1.png\" /> </jats:alternatives> </jats:inline-formula>-variables. These are more flexible than the Elsässer variables, because they also allow us to track waves with phase speeds different than the Alfvén speed. We rewrite the magnetohydrodynamics (MHD) equations with these <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000126_inline2.png\" /> </jats:alternatives> </jats:inline-formula>-variables. We consider also the linearised version of the resulting MHD equations in a uniform plasma, and recover the classical Alfvén waves, but also separate the fast and slow magnetosonic waves into upward- and downward-propagating waves. Moreover, we show that the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000126_inline3.png\" /> </jats:alternatives> </jats:inline-formula>-variables may also track the upward- and downward-propagating surface Alfvén waves in a non-uniform plasma, displaying the power of our generalisation. In the end, we lay the mathematical framework for driving solar wind models with a multitude of wave drivers.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"14 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000126","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Generalising the Elsässer variables, we introduce the $Q$-variables. These are more flexible than the Elsässer variables, because they also allow us to track waves with phase speeds different than the Alfvén speed. We rewrite the magnetohydrodynamics (MHD) equations with these $Q$-variables. We consider also the linearised version of the resulting MHD equations in a uniform plasma, and recover the classical Alfvén waves, but also separate the fast and slow magnetosonic waves into upward- and downward-propagating waves. Moreover, we show that the $Q$-variables may also track the upward- and downward-propagating surface Alfvén waves in a non-uniform plasma, displaying the power of our generalisation. In the end, we lay the mathematical framework for driving solar wind models with a multitude of wave drivers.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.