Portfolio Time Consistency and Utility Weighted Discount Rates

Oumar Mbodji, Traian A. Pirvu
{"title":"Portfolio Time Consistency and Utility Weighted Discount Rates","authors":"Oumar Mbodji, Traian A. Pirvu","doi":"arxiv-2402.05113","DOIUrl":null,"url":null,"abstract":"Merton portfolio management problem is studied in this paper within a\nstochastic volatility, non constant time discount rate, and power utility\nframework. This problem is time inconsistent and the way out of this\npredicament is to consider the subgame perfect strategies. The later are\ncharacterized through an extended Hamilton Jacobi Bellman (HJB) equation. A\nfixed point iteration is employed to solve the extended HJB equation. This is\ndone in a two stage approach: in a first step the utility weighted discount\nrate is introduced and characterized as the fixed point of a certain operator;\nin the second step the value function is determined through a linear parabolic\npartial differential equation. Numerical experiments explore the effect of the\ntime discount rate on the subgame perfect and precommitment strategies.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.05113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Merton portfolio management problem is studied in this paper within a stochastic volatility, non constant time discount rate, and power utility framework. This problem is time inconsistent and the way out of this predicament is to consider the subgame perfect strategies. The later are characterized through an extended Hamilton Jacobi Bellman (HJB) equation. A fixed point iteration is employed to solve the extended HJB equation. This is done in a two stage approach: in a first step the utility weighted discount rate is introduced and characterized as the fixed point of a certain operator; in the second step the value function is determined through a linear parabolic partial differential equation. Numerical experiments explore the effect of the time discount rate on the subgame perfect and precommitment strategies.
投资组合时间一致性和效用加权贴现率
本文在随机波动、非恒定时间贴现率和幂效用框架内研究了默顿投资组合管理问题。这个问题在时间上是不一致的,解决这一困境的方法是考虑子博弈完美策略。通过扩展的汉密尔顿-雅各布-贝尔曼(HJB)方程,可以对子博弈完美策略进行描述。我们采用定点迭代来求解扩展的 HJB 方程。该方法分为两个阶段:第一步,引入效用加权贴现率,并将其表征为某个算子的定点;第二步,通过线性抛物线偏微分方程确定价值函数。数值实验探索了时间贴现率对子博弈完美策略和预承诺策略的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信