Manipulating the Rate and Overpotential for Electrochemical Water Oxidation: Mechanistic Insights for Cobalt Catalysts Bearing Noninnocent Bis(benzimidazole)pyrazolide Ligands

IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yu-Ting Wu, Sharad V. Kumbhar, Ruei-Feng Tsai, Yung-Ching Yang, Wan-Qin Zeng, Yu-Han Wang, Wan-Chi Hsu, Yun-Wei Chiang*, Tzuhsiung Yang*, I-Chung Lu* and Yu-Heng Wang*, 
{"title":"Manipulating the Rate and Overpotential for Electrochemical Water Oxidation: Mechanistic Insights for Cobalt Catalysts Bearing Noninnocent Bis(benzimidazole)pyrazolide Ligands","authors":"Yu-Ting Wu,&nbsp;Sharad V. Kumbhar,&nbsp;Ruei-Feng Tsai,&nbsp;Yung-Ching Yang,&nbsp;Wan-Qin Zeng,&nbsp;Yu-Han Wang,&nbsp;Wan-Chi Hsu,&nbsp;Yun-Wei Chiang*,&nbsp;Tzuhsiung Yang*,&nbsp;I-Chung Lu* and Yu-Heng Wang*,&nbsp;","doi":"10.1021/acsorginorgau.3c00061","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical water oxidation is known as the anodic reaction of water splitting. Efficient design and earth-abundant electrocatalysts are crucial to this process. Herein, we report a family of catalysts (<b>1</b>–<b>3</b>) bearing bis(benzimidazole)pyrazolide ligands (<b>H</b><sub><b>2</b></sub><b>L1</b>–<b>H</b><sub><b>2</b></sub><b>L3</b>). <b>H</b><sub><b>2</b></sub><b>L3</b> contains electron-donating substituents and noninnocent components, resulting in catalyst <b>3</b> exhibiting unique performance. Kinetic studies show first-order kinetic dependence on [<b>3</b>] and [H<sub>2</sub>O] under neutral and alkaline conditions. In contrast to previously reported catalyst <b>1</b>, catalyst <b>3</b> exhibits an insignificant kinetic isotope effect of 1.25 and zero-order dependence on [NaOH]. Based on various spectroscopic methods and computational findings, the <b>L3</b>Co<sub>2</sub><sup>III</sup>(μ-OH) species is proposed to be the catalyst resting state and the nucleophilic attack of water on this species is identified as the turnover-limiting step of the catalytic reaction. Computational studies provided insights into how the interplay between the electronic effect and ligand noninnocence results in catalyst <b>3</b> acting via a different reaction mechanism. The variation in the turnover-limiting step and catalytic potentials of species <b>1</b>–<b>3</b> leads to their catalytic rates being independent of the overpotential, as evidenced by Eyring analysis. Overall, we demonstrate how ligand design may be utilized to retain good water oxidation activity at low overpotentials.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.3c00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water oxidation is known as the anodic reaction of water splitting. Efficient design and earth-abundant electrocatalysts are crucial to this process. Herein, we report a family of catalysts (13) bearing bis(benzimidazole)pyrazolide ligands (H2L1H2L3). H2L3 contains electron-donating substituents and noninnocent components, resulting in catalyst 3 exhibiting unique performance. Kinetic studies show first-order kinetic dependence on [3] and [H2O] under neutral and alkaline conditions. In contrast to previously reported catalyst 1, catalyst 3 exhibits an insignificant kinetic isotope effect of 1.25 and zero-order dependence on [NaOH]. Based on various spectroscopic methods and computational findings, the L3Co2III(μ-OH) species is proposed to be the catalyst resting state and the nucleophilic attack of water on this species is identified as the turnover-limiting step of the catalytic reaction. Computational studies provided insights into how the interplay between the electronic effect and ligand noninnocence results in catalyst 3 acting via a different reaction mechanism. The variation in the turnover-limiting step and catalytic potentials of species 13 leads to their catalytic rates being independent of the overpotential, as evidenced by Eyring analysis. Overall, we demonstrate how ligand design may be utilized to retain good water oxidation activity at low overpotentials.

Abstract Image

Abstract Image

操纵电化学水氧化的速率和过电位:对含有非无害双(苯并咪唑)吡唑配体的钴催化剂的机理认识
电化学水氧化被称为阳极水分裂反应。高效设计和富土电催化剂对这一过程至关重要。在此,我们报告了一系列含有双(苯并咪唑)吡唑配体(H2L1-H2L3)的催化剂(1-3)。H2L3 含有电子捐赠取代基和非无辜成分,因此催化剂 3 表现出独特的性能。动力学研究表明,在中性和碱性条件下,[3] 和 [H2O] 具有一阶动力学依赖性。与之前报道的催化剂 1 不同,催化剂 3 的动力学同位素效应为 1.25,与[NaOH]的关系为零。根据各种光谱方法和计算发现,L3Co2III(μ-OH) 物种被认为是催化剂的静止态,水对该物种的亲核攻击被认为是催化反应的转化限制步骤。计算研究深入揭示了电子效应和配体非长效性之间的相互作用如何导致催化剂 3 通过不同的反应机制发挥作用。正如艾林分析所证明的那样,物种 1-3 的转化限制步骤和催化电位的变化导致它们的催化速率与过电位无关。总之,我们展示了如何利用配体设计在低过电位下保持良好的水氧化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Organic & Inorganic Au
ACS Organic & Inorganic Au 有机化学、无机化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信