The relational complexity of linear groups acting on subspaces

Pub Date : 2024-02-13 DOI:10.1515/jgth-2023-0262
Saul D. Freedman, Veronica Kelsey, Colva M. Roney-Dougal
{"title":"The relational complexity of linear groups acting on subspaces","authors":"Saul D. Freedman, Veronica Kelsey, Colva M. Roney-Dougal","doi":"10.1515/jgth-2023-0262","DOIUrl":null,"url":null,"abstract":"The relational complexity of a subgroup 𝐺 of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Sym</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0262_ineq_0001.png\" /> <jats:tex-math>\\mathrm{Sym}({\\Omega})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a measure of the way in which the orbits of 𝐺 on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mi>k</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0262_ineq_0002.png\" /> <jats:tex-math>\\Omega^{k}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for various 𝑘 determine the original action of 𝐺. Very few precise values of relational complexity are known. This paper determines the exact relational complexity of all groups lying between <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>PSL</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"double-struck\">F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0262_ineq_0003.png\" /> <jats:tex-math>\\mathrm{PSL}_{n}(\\mathbb{F})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>PGL</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"double-struck\">F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0262_ineq_0004.png\" /> <jats:tex-math>\\mathrm{PGL}_{n}(\\mathbb{F})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, for an arbitrary field 𝔽, acting on the set of 1-dimensional subspaces of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"double-struck\">F</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0262_ineq_0005.png\" /> <jats:tex-math>\\mathbb{F}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also bound the relational complexity of all groups lying between <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>PSL</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0262_ineq_0006.png\" /> <jats:tex-math>\\mathrm{PSL}_{n}(q)</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">P</m:mi> <m:mo>⁢</m:mo> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi mathvariant=\"normal\">L</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>q</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0262_ineq_0007.png\" /> <jats:tex-math>\\mathrm{P}\\Gamma\\mathrm{L}_{n}(q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and generalise these results to the action on 𝑚-spaces for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0262_ineq_0008.png\" /> <jats:tex-math>m\\geq 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The relational complexity of a subgroup 𝐺 of Sym ( Ω ) \mathrm{Sym}({\Omega}) is a measure of the way in which the orbits of 𝐺 on Ω k \Omega^{k} for various 𝑘 determine the original action of 𝐺. Very few precise values of relational complexity are known. This paper determines the exact relational complexity of all groups lying between PSL n ( F ) \mathrm{PSL}_{n}(\mathbb{F}) and PGL n ( F ) \mathrm{PGL}_{n}(\mathbb{F}) , for an arbitrary field 𝔽, acting on the set of 1-dimensional subspaces of F n \mathbb{F}^{n} . We also bound the relational complexity of all groups lying between PSL n ( q ) \mathrm{PSL}_{n}(q) and P Γ L n ( q ) \mathrm{P}\Gamma\mathrm{L}_{n}(q) , and generalise these results to the action on 𝑚-spaces for m 1 m\geq 1 .
分享
查看原文
作用于子空间的线性群的关系复杂性
Sym ( Ω ) \mathrm{Sym}({\Omega})的子群𝐺的关系复杂度是一个度量,它衡量了不同𝑘的𝐺在Ω k \Omega^{k}上的轨道如何决定𝐺的原始作用。关系复杂度的精确值很少为人所知。本文确定了对于任意域𝔽,介于 PSL n ( F ) \mathrm{PSL}_{n}(\mathbb{F}) 和 PGL n ( F ) \mathrm{PGL}_{n}(\mathbb{F}) 之间,作用于 F n \mathbb{F}^{n} 的一维子空间集合的所有群的精确关系复杂度。我们还约束了介于 PSL n ( q ) \mathrm{PSL}_{n}(q) 和 P Γ L n ( q ) \mathrm{P}\Gamma\mathrm{L}_{n}(q) 之间的所有群的关系复杂度,并将这些结果推广到 m ≥ 1 m\geq 1 的𝑚 空间上的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信