Advances in cofactor immobilization for enhanced continuous-flow biocatalysis

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Bente Reus, Matteo Damian, Francesco G. Mutti
{"title":"Advances in cofactor immobilization for enhanced continuous-flow biocatalysis","authors":"Bente Reus, Matteo Damian, Francesco G. Mutti","doi":"10.1007/s41981-024-00315-2","DOIUrl":null,"url":null,"abstract":"<p>The merging of biocatalysis with continuous-flow chemistry opens up new opportunities for sustainable and efficient chemical synthesis. Cofactor-dependent enzymes are essential for various industrially attractive biocatalytic reactions. However, implementing these enzymes and biocatalytic reactions in industry remains challenging due to the inherent cost of cofactors and the requirement for their external supply in significant quantities. The development of efficient, low cost, simple and versatile methods for cofactor immobilization can address this important obstacle for biocatalysis in flow. This review explores recent progress in cofactor immobilization for biocatalysis by analyzing advantages and current limitations of the available methods that comprise covalent tethering, ionic adsorption, physical entrapment, and hybrid variations thereof. Moreover, this review analyzes all these immobilization techniques specifically for their utilization in continuous-flow chemistry and provides a perspective for future work in this area. This review will serve as a guide for steering the field towards more sustainable and economically viable continuous-flow biocatalysis.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s41981-024-00315-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The merging of biocatalysis with continuous-flow chemistry opens up new opportunities for sustainable and efficient chemical synthesis. Cofactor-dependent enzymes are essential for various industrially attractive biocatalytic reactions. However, implementing these enzymes and biocatalytic reactions in industry remains challenging due to the inherent cost of cofactors and the requirement for their external supply in significant quantities. The development of efficient, low cost, simple and versatile methods for cofactor immobilization can address this important obstacle for biocatalysis in flow. This review explores recent progress in cofactor immobilization for biocatalysis by analyzing advantages and current limitations of the available methods that comprise covalent tethering, ionic adsorption, physical entrapment, and hybrid variations thereof. Moreover, this review analyzes all these immobilization techniques specifically for their utilization in continuous-flow chemistry and provides a perspective for future work in this area. This review will serve as a guide for steering the field towards more sustainable and economically viable continuous-flow biocatalysis.

Graphical Abstract

Abstract Image

用于增强连续流生物催化的辅助因子固定化研究进展
生物催化与连续流化学的融合为可持续高效化学合成开辟了新的机遇。对于各种具有工业吸引力的生物催化反应来说,依赖于辅因子的酶是必不可少的。然而,由于辅因子的固有成本以及需要大量外部供应,在工业中实施这些酶和生物催化反应仍然具有挑战性。开发高效、低成本、简单和多用途的辅助因子固定化方法可以解决流动生物催化的这一重要障碍。本综述通过分析现有方法(包括共价拴系、离子吸附、物理夹持及其混合变体)的优势和目前的局限性,探讨了用于生物催化的辅助因子固定化的最新进展。此外,本综述还分析了所有这些固定化技术在连续流化学中的具体应用,并为这一领域的未来工作提供了展望。本综述将成为指导该领域走向更具可持续性和经济可行性的连续流生物催化的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信