Viktor Razilov, Robert Wittig, Emil Matúš, Gerhard Fettweis
{"title":"Access Interval Prediction by Partial Matching for Tightly Coupled Memory Systems","authors":"Viktor Razilov, Robert Wittig, Emil Matúš, Gerhard Fettweis","doi":"10.1007/s10766-024-00764-1","DOIUrl":null,"url":null,"abstract":"<p>In embedded systems, tightly coupled memories (TCMs) are usually shared between multiple masters for the purpose of hardware efficiency and software flexibility. On the one hand, memory sharing improves area utilization, but on the other hand, this can lead to a performance degradation due to an increase in access conflicts. To mitigate the associated performance penalty, access interval prediction (AIP) has been proposed. In a similar fashion to branch prediction, AIP exploits program flow regularity to predict the cycle of the next memory access. We show that this structural similarity allows for adaption of state-of-the-art branch predictors, such as Prediction by Partial Matching (PPM) and the TAgged GEometric history length (TAGE) branch predictor. Our analysis on memory access traces reveals that PPM predicts 99 percent of memory accesses. As PPM does not lend itself to hardware implementation, we also present the PPM-based TAGE access interval predictor which attains an accuracy of over 97 percent outperforming all previously presented implementable AIP schemes.</p>","PeriodicalId":14313,"journal":{"name":"International Journal of Parallel Programming","volume":"29 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10766-024-00764-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In embedded systems, tightly coupled memories (TCMs) are usually shared between multiple masters for the purpose of hardware efficiency and software flexibility. On the one hand, memory sharing improves area utilization, but on the other hand, this can lead to a performance degradation due to an increase in access conflicts. To mitigate the associated performance penalty, access interval prediction (AIP) has been proposed. In a similar fashion to branch prediction, AIP exploits program flow regularity to predict the cycle of the next memory access. We show that this structural similarity allows for adaption of state-of-the-art branch predictors, such as Prediction by Partial Matching (PPM) and the TAgged GEometric history length (TAGE) branch predictor. Our analysis on memory access traces reveals that PPM predicts 99 percent of memory accesses. As PPM does not lend itself to hardware implementation, we also present the PPM-based TAGE access interval predictor which attains an accuracy of over 97 percent outperforming all previously presented implementable AIP schemes.
期刊介绍:
International Journal of Parallel Programming is a forum for the publication of peer-reviewed, high-quality original papers in the computer and information sciences, focusing specifically on programming aspects of parallel computing systems. Such systems are characterized by the coexistence over time of multiple coordinated activities. The journal publishes both original research and survey papers. Fields of interest include: linguistic foundations, conceptual frameworks, high-level languages, evaluation methods, implementation techniques, programming support systems, pragmatic considerations, architectural characteristics, software engineering aspects, advances in parallel algorithms, performance studies, and application studies.