{"title":"A Practical Approach for Employing Tensor Train Decomposition in Edge Devices","authors":"Milad Kokhazadeh, Georgios Keramidas, Vasilios Kelefouras, Iakovos Stamoulis","doi":"10.1007/s10766-024-00762-3","DOIUrl":null,"url":null,"abstract":"<p>Deep Neural Networks (DNN) have made significant advances in various fields including speech recognition and image processing. Typically, modern DNNs are both compute and memory intensive, therefore their deployment in low-end devices is a challenging task. A well-known technique to address this problem is Low-Rank Factorization (LRF), where a weight tensor is approximated by one or more lower-rank tensors, reducing both the memory size and the number of executed tensor operations. However, the employment of LRF is a multi-parametric optimization process involving a huge design space where different design points represent different solutions trading-off the number of FLOPs, the memory size, and the prediction accuracy of the DNN models. As a result, extracting an efficient solution is a complex and time-consuming process. In this work, a new methodology is presented that formulates the LRF problem as a (FLOPs vs. memory vs. prediction accuracy) Design Space Exploration (DSE) problem. Then, the DSE space is drastically pruned by removing inefficient solutions. Our experimental results prove that the design space can be efficiently pruned, therefore extract only a limited set of solutions with improved accuracy, memory, and FLOPs compared to the original (non-factorized) model. Our methodology has been developed as a stand-alone, parameterized module integrated into T3F library of TensorFlow 2.X.</p>","PeriodicalId":14313,"journal":{"name":"International Journal of Parallel Programming","volume":"54 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10766-024-00762-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep Neural Networks (DNN) have made significant advances in various fields including speech recognition and image processing. Typically, modern DNNs are both compute and memory intensive, therefore their deployment in low-end devices is a challenging task. A well-known technique to address this problem is Low-Rank Factorization (LRF), where a weight tensor is approximated by one or more lower-rank tensors, reducing both the memory size and the number of executed tensor operations. However, the employment of LRF is a multi-parametric optimization process involving a huge design space where different design points represent different solutions trading-off the number of FLOPs, the memory size, and the prediction accuracy of the DNN models. As a result, extracting an efficient solution is a complex and time-consuming process. In this work, a new methodology is presented that formulates the LRF problem as a (FLOPs vs. memory vs. prediction accuracy) Design Space Exploration (DSE) problem. Then, the DSE space is drastically pruned by removing inefficient solutions. Our experimental results prove that the design space can be efficiently pruned, therefore extract only a limited set of solutions with improved accuracy, memory, and FLOPs compared to the original (non-factorized) model. Our methodology has been developed as a stand-alone, parameterized module integrated into T3F library of TensorFlow 2.X.
期刊介绍:
International Journal of Parallel Programming is a forum for the publication of peer-reviewed, high-quality original papers in the computer and information sciences, focusing specifically on programming aspects of parallel computing systems. Such systems are characterized by the coexistence over time of multiple coordinated activities. The journal publishes both original research and survey papers. Fields of interest include: linguistic foundations, conceptual frameworks, high-level languages, evaluation methods, implementation techniques, programming support systems, pragmatic considerations, architectural characteristics, software engineering aspects, advances in parallel algorithms, performance studies, and application studies.