{"title":"Fault Feature Extraction Method of Rolling Bearing Based on IAFD and TKEO","authors":"Kai Guo, Jun Ma, Xin Xiong, Yuming Hu, Xiang Li","doi":"10.1155/2024/8551009","DOIUrl":null,"url":null,"abstract":"The study of bearing fault feature extraction using adaptive Fourier decomposition (AFD) holds significant practical importance. However, AFD is constrained by its reliance on prior knowledge for determining decomposition levels, which can result in either underdecomposition or overdecomposition based on a single indicator. Consequently, an improved adaptive Fourier decomposition (IAFD) is proposed. First, a combined weight index called SP is constructed, and the whale optimization algorithm is employed to optimize the SP weight parameter. Second, the IAFD decomposition levels can be adaptively determined using the optimized SP. Finally, a feature extraction method-based IAFD and Teager–Kaiser energy operator is applied in rolling bearing fault diagnosis. Case studies on the Case Western Reserve University and self-made KUST-SY datasets validate the effectiveness of the proposed method.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"25 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8551009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The study of bearing fault feature extraction using adaptive Fourier decomposition (AFD) holds significant practical importance. However, AFD is constrained by its reliance on prior knowledge for determining decomposition levels, which can result in either underdecomposition or overdecomposition based on a single indicator. Consequently, an improved adaptive Fourier decomposition (IAFD) is proposed. First, a combined weight index called SP is constructed, and the whale optimization algorithm is employed to optimize the SP weight parameter. Second, the IAFD decomposition levels can be adaptively determined using the optimized SP. Finally, a feature extraction method-based IAFD and Teager–Kaiser energy operator is applied in rolling bearing fault diagnosis. Case studies on the Case Western Reserve University and self-made KUST-SY datasets validate the effectiveness of the proposed method.
Journal of SensorsENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍:
Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged.
Envisaged applications include, but are not limited to:
-Medical, healthcare, and lifestyle monitoring
-Environmental and atmospheric monitoring
-Sensing for engineering, manufacturing and processing industries
-Transportation, navigation, and geolocation
-Vision, perception, and sensing for robots and UAVs
The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management.
As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.