{"title":"Fault Feature Extraction Method of Rolling Bearing Based on IAFD and TKEO","authors":"Kai Guo, Jun Ma, Xin Xiong, Yuming Hu, Xiang Li","doi":"10.1155/2024/8551009","DOIUrl":null,"url":null,"abstract":"The study of bearing fault feature extraction using adaptive Fourier decomposition (AFD) holds significant practical importance. However, AFD is constrained by its reliance on prior knowledge for determining decomposition levels, which can result in either underdecomposition or overdecomposition based on a single indicator. Consequently, an improved adaptive Fourier decomposition (IAFD) is proposed. First, a combined weight index called SP is constructed, and the whale optimization algorithm is employed to optimize the SP weight parameter. Second, the IAFD decomposition levels can be adaptively determined using the optimized SP. Finally, a feature extraction method-based IAFD and Teager–Kaiser energy operator is applied in rolling bearing fault diagnosis. Case studies on the Case Western Reserve University and self-made KUST-SY datasets validate the effectiveness of the proposed method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8551009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of bearing fault feature extraction using adaptive Fourier decomposition (AFD) holds significant practical importance. However, AFD is constrained by its reliance on prior knowledge for determining decomposition levels, which can result in either underdecomposition or overdecomposition based on a single indicator. Consequently, an improved adaptive Fourier decomposition (IAFD) is proposed. First, a combined weight index called SP is constructed, and the whale optimization algorithm is employed to optimize the SP weight parameter. Second, the IAFD decomposition levels can be adaptively determined using the optimized SP. Finally, a feature extraction method-based IAFD and Teager–Kaiser energy operator is applied in rolling bearing fault diagnosis. Case studies on the Case Western Reserve University and self-made KUST-SY datasets validate the effectiveness of the proposed method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.