Wideband nonuniform metasurface antenna with stable gain

IF 1.4 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Guorui Han, Zijun Zheng, Jinrong Su, Hao Yuan, Wenmei Zhang
{"title":"Wideband nonuniform metasurface antenna with stable gain","authors":"Guorui Han, Zijun Zheng, Jinrong Su, Hao Yuan, Wenmei Zhang","doi":"10.1017/s1759078723001034","DOIUrl":null,"url":null,"abstract":"A novel wideband nonuniform metasurface antenna with stable gain is demonstrated. The nonuniform metasurface is composed of square patches and rings and is excited by a slot antenna. Based on characteristic mode analysis, two characteristic modes with same current direction are selected to achieve stable radiation performance in a wide frequency range. The wideband operation is achieved by assembling the resonant modes of the metasurface and slot antenna. The measured results show that the −10 dB impedance bandwidth of the proposed antenna is from 4.3 to 8.4 GHz (64.57%), and the 2 dB gain bandwidth is from 4.3 to 6.2 GHz (36.2%) with a peak gain value of 9.42 dBi. Moreover, broadside radiation performance is achieved.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078723001034","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A novel wideband nonuniform metasurface antenna with stable gain is demonstrated. The nonuniform metasurface is composed of square patches and rings and is excited by a slot antenna. Based on characteristic mode analysis, two characteristic modes with same current direction are selected to achieve stable radiation performance in a wide frequency range. The wideband operation is achieved by assembling the resonant modes of the metasurface and slot antenna. The measured results show that the −10 dB impedance bandwidth of the proposed antenna is from 4.3 to 8.4 GHz (64.57%), and the 2 dB gain bandwidth is from 4.3 to 6.2 GHz (36.2%) with a peak gain value of 9.42 dBi. Moreover, broadside radiation performance is achieved.
增益稳定的宽带非均匀元面天线
演示了一种具有稳定增益的新型宽带非均匀元面天线。非均匀元面由方形贴片和环组成,并由槽形天线激励。根据特征模态分析,选择了两个电流方向相同的特征模态,从而在较宽的频率范围内实现了稳定的辐射性能。通过组合元表面和槽形天线的谐振模式,实现了宽带工作。测量结果表明,拟议天线的 -10 dB 阻抗带宽为 4.3 至 8.4 GHz(64.57%),2 dB 增益带宽为 4.3 至 6.2 GHz(36.2%),峰值增益为 9.42 dBi。此外,还实现了宽边辐射性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Microwave and Wireless Technologies
International Journal of Microwave and Wireless Technologies ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.50
自引率
7.10%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信