Kirkendall oxidation tailors lattice strain in transition metal oxides for efficient oxygen electrocatalysis

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-03-06 DOI:10.1016/j.matt.2024.01.013
Yinghui Li , Haoming Shen , Buguang Zhou , Junyi Li , Liming Wang , Qiang Sun , Seeram Ramakrishna , Mingchuan Luo , Dongxiao Ji , Xiaohong Qin
{"title":"Kirkendall oxidation tailors lattice strain in transition metal oxides for efficient oxygen electrocatalysis","authors":"Yinghui Li ,&nbsp;Haoming Shen ,&nbsp;Buguang Zhou ,&nbsp;Junyi Li ,&nbsp;Liming Wang ,&nbsp;Qiang Sun ,&nbsp;Seeram Ramakrishna ,&nbsp;Mingchuan Luo ,&nbsp;Dongxiao Ji ,&nbsp;Xiaohong Qin","doi":"10.1016/j.matt.2024.01.013","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Advanced electrocatalysts<span> for oxygen reduction/evolution reaction (ORR/OER) are pivotal to clean energy conversions. Lattice strain has been found to effectively enhance catalytic performance in transition metal oxides (TMOs), but precise control is challenging with conventional bulk processing methods. Herein, we report the regulation of lattice strain (ranging from 0% to 2.2%) in TMOs through Kirkendall diffusion, enabling us to chart the strain-dependent </span></span>electrocatalysis. The Co</span><sub>3</sub>O<sub>4</sub><span> 400 plane with an optimal 1.8% tensile strain delivers an ORR half-wave potential of 0.86 V and a small OER overpotential of 0.30 V at 10 mA cm</span><sup>−2</sup><span> in alkaline environments, located among the top TMO-based electrocatalysts. X-ray absorption spectra and density functional theory calculations collectively suggest that tensile strain simultaneously optimizes the adsorption of </span><sup>∗</sup>OOH and the desorption of <sup>∗</sup>OH on adjacent Co atoms. This work provides new insights into regulating strain in TMOs for advanced oxygen electrocatalysis, which is extendable to other catalytic applications.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 3","pages":"Pages 1245-1258"},"PeriodicalIF":17.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524000110","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced electrocatalysts for oxygen reduction/evolution reaction (ORR/OER) are pivotal to clean energy conversions. Lattice strain has been found to effectively enhance catalytic performance in transition metal oxides (TMOs), but precise control is challenging with conventional bulk processing methods. Herein, we report the regulation of lattice strain (ranging from 0% to 2.2%) in TMOs through Kirkendall diffusion, enabling us to chart the strain-dependent electrocatalysis. The Co3O4 400 plane with an optimal 1.8% tensile strain delivers an ORR half-wave potential of 0.86 V and a small OER overpotential of 0.30 V at 10 mA cm−2 in alkaline environments, located among the top TMO-based electrocatalysts. X-ray absorption spectra and density functional theory calculations collectively suggest that tensile strain simultaneously optimizes the adsorption of OOH and the desorption of OH on adjacent Co atoms. This work provides new insights into regulating strain in TMOs for advanced oxygen electrocatalysis, which is extendable to other catalytic applications.

Abstract Image

Abstract Image

Kirkendall 氧化作用可调整过渡金属氧化物的晶格应变,实现高效氧电催化
先进的氧还原/进化反应(ORR/OER)电催化剂对清洁能源转换至关重要。研究发现,晶格应变能有效提高过渡金属氧化物(TMOs)的催化性能,但传统的批量加工方法很难精确控制晶格应变。在此,我们报告了通过 Kirkendall 扩散对过渡金属氧化物中晶格应变(从 0% 到 2.2%)的调节,使我们能够绘制出应变依赖性电催化图。具有 1.8% 最佳拉伸应变的 Co3O4 400 平面在碱性环境中 10 mA cm-2 时的 ORR 半波电位为 0.86 V,OER 过电位为 0.30 V,在基于 TMO 的电催化剂中名列前茅。X 射线吸收光谱和密度泛函理论计算共同表明,拉伸应变同时优化了相邻 Co 原子上 ∗OOH 的吸附和 ∗OH 的解吸。这项工作为调节 TMO 中的应变以实现先进的氧电催化提供了新的见解,并可扩展到其他催化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信