Profiles of free Surfaces in Revolved Containers Under Microgravity

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Shuyang Chen, Li Duan, Wen Li, Shangtong Chen, Qi Kang
{"title":"Profiles of free Surfaces in Revolved Containers Under Microgravity","authors":"Shuyang Chen,&nbsp;Li Duan,&nbsp;Wen Li,&nbsp;Shangtong Chen,&nbsp;Qi Kang","doi":"10.1007/s12217-023-10093-6","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays a propellant residual gauging method based on the thermal response of the tanks’ wall is developed. And the liquid distribution and meniscus height have great effects on the thermal response. Profiles of liquid free surfaces in revolved containers under microgravity are studied through theoretical analysis and numerical simulation in this paper. The analytical formula for the static profile of the liquid surface in the spherical tank is established. It shows that the profile is a section of a circle cut off by the tank wall. For given the geometry of the tank, liquid volume and contact angle, the profile of the free surfaces under microgravity can be obtained by using the Shooting method based on the theoretical model. Numerical simulation is carried out with the Volume of Fluid method, and it is verified that the static profiles at different contact angles and liquid filling rates fit the theoretical descriptions. It is concluded that the meniscus height increases slowly as the filling rate increases, and the smaller the contact angle, the more obvious this trend. Then the theory is extended to the tanks of arbitrary shapes, and the critical position of the profile is derived. Below the critical position the propellant may accumulate in some corners or pits, which makes it unable to be fully utilized. The critical position is related to the shape of the tank and the contact angle. This research is of great value for the prediction of the static profiles of liquid surfaces in tanks and the propellant residual gauging.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10093-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays a propellant residual gauging method based on the thermal response of the tanks’ wall is developed. And the liquid distribution and meniscus height have great effects on the thermal response. Profiles of liquid free surfaces in revolved containers under microgravity are studied through theoretical analysis and numerical simulation in this paper. The analytical formula for the static profile of the liquid surface in the spherical tank is established. It shows that the profile is a section of a circle cut off by the tank wall. For given the geometry of the tank, liquid volume and contact angle, the profile of the free surfaces under microgravity can be obtained by using the Shooting method based on the theoretical model. Numerical simulation is carried out with the Volume of Fluid method, and it is verified that the static profiles at different contact angles and liquid filling rates fit the theoretical descriptions. It is concluded that the meniscus height increases slowly as the filling rate increases, and the smaller the contact angle, the more obvious this trend. Then the theory is extended to the tanks of arbitrary shapes, and the critical position of the profile is derived. Below the critical position the propellant may accumulate in some corners or pits, which makes it unable to be fully utilized. The critical position is related to the shape of the tank and the contact angle. This research is of great value for the prediction of the static profiles of liquid surfaces in tanks and the propellant residual gauging.

Abstract Image

微重力下旋转容器中自由表面的轮廓
如今,一种基于罐壁热反应的推进剂残留测量方法已经问世。液体分布和半月板高度对热响应有很大影响。本文通过理论分析和数值模拟研究了微重力条件下旋转容器中液体自由表面的轮廓。建立了球形容器中液体表面静态剖面的解析公式。结果表明,该剖面是被罐壁截断的圆的截面。在给定水箱几何形状、液体体积和接触角的情况下,可根据理论模型使用射影法获得微重力条件下的自由表面轮廓。利用流体体积法进行了数值模拟,验证了不同接触角和液体填充率下的静态轮廓符合理论描述。结论是,随着填充率的增加,半月板高度缓慢增加,且接触角越小,这种趋势越明显。然后,该理论扩展到任意形状的储罐,并得出了轮廓的临界位置。在临界位置以下,推进剂可能会积聚在一些角落或凹坑中,导致无法充分利用。临界位置与罐体形状和接触角有关。这项研究对于预测储罐中液体表面的静态轮廓和推进剂残留测量具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信