Strategies to overcome electron-beam issues in liquid phase TEM: Study of chemical processes

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenjing Zheng, Daewon Lee, Haimei Zheng
{"title":"Strategies to overcome electron-beam issues in liquid phase TEM: Study of chemical processes","authors":"Wenjing Zheng, Daewon Lee, Haimei Zheng","doi":"10.1557/s43577-024-00661-5","DOIUrl":null,"url":null,"abstract":"<p>Liquid phase (or liquid cell) transmission electron microscopy (TEM) has become a powerful platform for <i>in situ</i> investigation of various chemical processes at the nanometer or atomic level. The electron beam for imaging can also induce perturbation to the chemical processes. Thus, it has been a concern that the observed phenomena in a liquid cell could deviate from the real-world processes. Strategies have been developed to overcome the electron-beam-induced issues. This article provides an overview of the electron-beam effects, and discusses various strategies in liquid cell TEM study of nucleation, growth, and self-assembly of nanoscale materials, where an electron beam is often used to initiate the reactions, and highly electron-beam-sensitive electrochemical reactions.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"24 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00661-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid phase (or liquid cell) transmission electron microscopy (TEM) has become a powerful platform for in situ investigation of various chemical processes at the nanometer or atomic level. The electron beam for imaging can also induce perturbation to the chemical processes. Thus, it has been a concern that the observed phenomena in a liquid cell could deviate from the real-world processes. Strategies have been developed to overcome the electron-beam-induced issues. This article provides an overview of the electron-beam effects, and discusses various strategies in liquid cell TEM study of nucleation, growth, and self-assembly of nanoscale materials, where an electron beam is often used to initiate the reactions, and highly electron-beam-sensitive electrochemical reactions.

Graphical abstract

Abstract Image

克服液相 TEM 中电子束问题的策略:化学过程研究
液相(或液胞)透射电子显微镜(TEM)已成为在纳米或原子级别现场研究各种化学过程的强大平台。用于成像的电子束也会对化学过程产生扰动。因此,人们担心在液胞中观察到的现象可能会偏离真实世界的过程。为了克服电子束引起的问题,人们已经开发了一些策略。本文概述了电子束效应,并讨论了在液胞 TEM 中研究纳米级材料的成核、生长和自组装(通常使用电子束引发反应)以及对电子束高度敏感的电化学反应的各种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mrs Bulletin
Mrs Bulletin 工程技术-材料科学:综合
CiteScore
7.40
自引率
2.00%
发文量
193
审稿时长
4-8 weeks
期刊介绍: MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信