On a Stokes System Arising in a Free Surface Viscous Flow of a Horizontally Periodic Fluid with Fractional Boundary Operators

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Daisuke Hirata
{"title":"On a Stokes System Arising in a Free Surface Viscous Flow of a Horizontally Periodic Fluid with Fractional Boundary Operators","authors":"Daisuke Hirata","doi":"10.1007/s00021-023-00850-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we investigate the initial-boundary value problem for a Stokes system arising in a free surface viscous flow of a horizontally periodic fluid with fractional boundary operators. We derive an integral representation of solutions by making use of the multiple Fourier series. Moreover, we demonstrate a unique solvability in the framework of the Sobolev space of <span>\\(L^2\\)</span>-type.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00850-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we investigate the initial-boundary value problem for a Stokes system arising in a free surface viscous flow of a horizontally periodic fluid with fractional boundary operators. We derive an integral representation of solutions by making use of the multiple Fourier series. Moreover, we demonstrate a unique solvability in the framework of the Sobolev space of \(L^2\)-type.

关于水平周期流体自由表面粘性流动中出现的斯托克斯系统与分数边界算子
摘要 在本论文中,我们研究了在水平周期流体的自由表面粘性流动中出现的斯托克斯系统的初始边界值问题,该系统带有分数边界算子。我们利用多重傅里叶级数推导出解的积分表示。此外,我们还证明了在\(L^2\) 型 Sobolev 空间框架下的唯一可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信