Identity and Extensionality in Boffa Set Theory

IF 0.8 1区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE
Nuno Maia, Matteo Nizzardo
{"title":"Identity and Extensionality in Boffa Set Theory","authors":"Nuno Maia, Matteo Nizzardo","doi":"10.1093/philmat/nkad025","DOIUrl":null,"url":null,"abstract":"Boffa non-well-founded set theory allows for several distinct sets equal to their respective singletons, the so-called ‘Quine atoms’. Rieger contends that this theory cannot be a faithful description of set-theoretic reality. He argues that, even after granting that there are non-well-founded sets, ‘the extensional nature of sets’ precludes numerically distinct Quine atoms. In this paper we uncover important similarities between Rieger’s argument and how non-rigid structures are conceived within mathematical structuralism. This opens the way for an objection against Rieger, whilst affording the theoretical resources for a defence of Boffa set theory as a faithful description of set-theoretic reality.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"29 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/philmat/nkad025","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Boffa non-well-founded set theory allows for several distinct sets equal to their respective singletons, the so-called ‘Quine atoms’. Rieger contends that this theory cannot be a faithful description of set-theoretic reality. He argues that, even after granting that there are non-well-founded sets, ‘the extensional nature of sets’ precludes numerically distinct Quine atoms. In this paper we uncover important similarities between Rieger’s argument and how non-rigid structures are conceived within mathematical structuralism. This opens the way for an objection against Rieger, whilst affording the theoretical resources for a defence of Boffa set theory as a faithful description of set-theoretic reality.
波法集合论中的同一性和扩展性
波法非完备集合论允许几个不同的集合等于各自的单子,即所谓的 "奎因原子"。里格认为,这一理论不能忠实地描述集合论的现实。他认为,即使承认存在非完备集合,"集合的扩展性 "也排除了在数量上截然不同的奎因原子。在本文中,我们揭示了里格的论证与数学结构主义如何构想非刚性结构之间的重要相似之处。这为反对里格的观点开辟了道路,同时也为博法集合论作为集合论现实的忠实描述进行辩护提供了理论资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Philosophia Mathematica
Philosophia Mathematica HISTORY & PHILOSOPHY OF SCIENCE-
CiteScore
1.70
自引率
9.10%
发文量
26
审稿时长
>12 weeks
期刊介绍: Philosophia Mathematica is the only journal in the world devoted specifically to philosophy of mathematics. The journal publishes peer-reviewed new work in philosophy of mathematics, the application of mathematics, and computing. In addition to main articles, sometimes grouped on a single theme, there are shorter discussion notes, letters, and book reviews. The journal is published online-only, with three issues published per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信