Fabrication of transferable ultrathin Au films with eminent thermal stability via a nanocrystalline MoS2 interlayer

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuangyue Wang , Mengyao Li , Yang Liu , Junjie Shi , Ashraful Azam , Xiaotao Zu , Liang Qiao , Peter Reece , John Stride , Jack Yang , Danyang Wang , Sean Li
{"title":"Fabrication of transferable ultrathin Au films with eminent thermal stability via a nanocrystalline MoS2 interlayer","authors":"Shuangyue Wang ,&nbsp;Mengyao Li ,&nbsp;Yang Liu ,&nbsp;Junjie Shi ,&nbsp;Ashraful Azam ,&nbsp;Xiaotao Zu ,&nbsp;Liang Qiao ,&nbsp;Peter Reece ,&nbsp;John Stride ,&nbsp;Jack Yang ,&nbsp;Danyang Wang ,&nbsp;Sean Li","doi":"10.1016/j.mtnano.2024.100460","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrathin gold (Au) films are a critical component in plasmonics, metal optics, and nano-electronics devices. However, fabricating ultrathin Au films faces a great challenge due to the dewetting behavior of Au when being deposited onto an oxide (such as SiO<sub>2</sub>/Si or Al<sub>2</sub>O<sub>3</sub>) substrate. This problem is often relieved by introducing a metal or an organic adhesion layer to bind the Au film with the substrate. While the interdiffusion and thermal instability of the adhesion layers often negatively affect the physical properties of the films. Besides, this kind of Au film is usually untransferable due to the strong chemical bonding at the interfaces. Herein, we demonstrate a new strategy of utilizing a nanocrystalline MoS<sub>2</sub> layer as the adhesion interlayer to stabilize the Au film. The atomically thin nanocrystalline MoS<sub>2</sub> with abundant fresh edges enhances the wetting of Au films and allows for the ultra-smoothness and a few nanometers in thickness of the Au films without interdiffusion. The resulting ultrathin Au films possess superior electrical conductivity, high optical transmittance, and eminent thermal stability, which are much better than those utilizing Cu or Ti as the adhesion layers. Moreover, these Au films can be easily transferred to arbitrary substrates. Our method provides a new benchmark in the fabrication of transferable ultrathin and thermally stable Au films.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100460"},"PeriodicalIF":8.2000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588842024000105/pdfft?md5=78d942e7da1cfb68709834b153284e42&pid=1-s2.0-S2588842024000105-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000105","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrathin gold (Au) films are a critical component in plasmonics, metal optics, and nano-electronics devices. However, fabricating ultrathin Au films faces a great challenge due to the dewetting behavior of Au when being deposited onto an oxide (such as SiO2/Si or Al2O3) substrate. This problem is often relieved by introducing a metal or an organic adhesion layer to bind the Au film with the substrate. While the interdiffusion and thermal instability of the adhesion layers often negatively affect the physical properties of the films. Besides, this kind of Au film is usually untransferable due to the strong chemical bonding at the interfaces. Herein, we demonstrate a new strategy of utilizing a nanocrystalline MoS2 layer as the adhesion interlayer to stabilize the Au film. The atomically thin nanocrystalline MoS2 with abundant fresh edges enhances the wetting of Au films and allows for the ultra-smoothness and a few nanometers in thickness of the Au films without interdiffusion. The resulting ultrathin Au films possess superior electrical conductivity, high optical transmittance, and eminent thermal stability, which are much better than those utilizing Cu or Ti as the adhesion layers. Moreover, these Au films can be easily transferred to arbitrary substrates. Our method provides a new benchmark in the fabrication of transferable ultrathin and thermally stable Au films.

通过纳米晶 MoS2 中间膜制备具有出色热稳定性的可转移超薄金薄膜
超薄金(Au)薄膜是等离子体学、金属光学和纳米电子器件的重要组成部分。然而,由于金在沉积到氧化物(如 SiO2/Si 或 Al2O3)基底上时会出现露湿现象,因此制作超薄金薄膜面临着巨大的挑战。通常情况下,通过引入金属或有机粘附层将金薄膜与基底结合在一起,就能解决这一问题。但粘附层的相互扩散和热不稳定性往往会对薄膜的物理性质产生负面影响。此外,由于界面上的化学键很强,这种金薄膜通常无法转移。在此,我们展示了一种利用纳米晶 MoS2 层作为粘附中间层来稳定金薄膜的新策略。原子级薄的纳米晶 MoS2 具有丰富的新鲜边缘,可增强金薄膜的润湿性,使金薄膜超光滑,厚度仅为几毫米,且无相互扩散。由此产生的超薄金膜具有卓越的导电性、高透光率和出色的热稳定性,这些性能都远远优于使用铜或钛作为粘附层的金膜。此外,这些金薄膜还可以很容易地转移到任意基底上。我们的方法为制造可转移的超薄和热稳定性金薄膜提供了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信