Congyi Shen , Jian Wang , Guangfeng Li , Shuyue Hao , Yan Wu , Peiran Song , Yafei Han , Mengmeng Li , Guangchao Wang , Ke Xu , Hao Zhang , Xiaoxiang Ren , Yingying Jing , Ru Yang , Zhen Geng , Jiacan Su
{"title":"Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor","authors":"Congyi Shen , Jian Wang , Guangfeng Li , Shuyue Hao , Yan Wu , Peiran Song , Yafei Han , Mengmeng Li , Guangchao Wang , Ke Xu , Hao Zhang , Xiaoxiang Ren , Yingying Jing , Ru Yang , Zhen Geng , Jiacan Su","doi":"10.1016/j.bioactmat.2024.02.016","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoarthritis (OA), a common degenerative disease, is characterized by high disability and imposes substantial economic impacts on individuals and society. Current clinical treatments remain inadequate for effectively managing OA. Organoids, miniature 3D tissue structures from directed differentiation of stem or progenitor cells, mimic native organ structures and functions. They are useful for drug testing and serve as active grafts for organ repair. However, organoid construction requires extracellular matrix-like 3D scaffolds for cellular growth. Hydrogel microspheres, with tunable physical and chemical properties, show promise in cartilage tissue engineering by replicating the natural microenvironment. Building on prior work on SF-DNA dual-network hydrogels for cartilage regeneration, we developed a novel RGD-SF-DNA hydrogel microsphere (RSD-MS) via a microfluidic system by integrating photopolymerization with self-assembly techniques and then modified with Pep-RGDfKA. The RSD-MSs exhibited uniform size, porous surface, and optimal swelling and degradation properties. <em>In vitro</em> studies demonstrated that RSD-MSs enhanced bone marrow mesenchymal stem cells (BMSCs) proliferation, adhesion, and chondrogenic differentiation. Transcriptomic analysis showed RSD-MSs induced chondrogenesis mainly through integrin-mediated adhesion pathways and glycosaminoglycan biosynthesis. Moreover, <em>in vivo</em> studies showed that seeding BMSCs onto RSD-MSs to create cartilage organoid precursors (COPs) significantly enhanced cartilage regeneration. In conclusion, RSD-MS was an ideal candidate for the construction and long-term cultivation of cartilage organoids, offering an innovative strategy and material choice for cartilage regeneration and tissue engineering.</p></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"35 ","pages":"Pages 429-444"},"PeriodicalIF":18.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452199X24000616/pdfft?md5=684a401e085d5baa0539350529290eec&pid=1-s2.0-S2452199X24000616-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24000616","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA), a common degenerative disease, is characterized by high disability and imposes substantial economic impacts on individuals and society. Current clinical treatments remain inadequate for effectively managing OA. Organoids, miniature 3D tissue structures from directed differentiation of stem or progenitor cells, mimic native organ structures and functions. They are useful for drug testing and serve as active grafts for organ repair. However, organoid construction requires extracellular matrix-like 3D scaffolds for cellular growth. Hydrogel microspheres, with tunable physical and chemical properties, show promise in cartilage tissue engineering by replicating the natural microenvironment. Building on prior work on SF-DNA dual-network hydrogels for cartilage regeneration, we developed a novel RGD-SF-DNA hydrogel microsphere (RSD-MS) via a microfluidic system by integrating photopolymerization with self-assembly techniques and then modified with Pep-RGDfKA. The RSD-MSs exhibited uniform size, porous surface, and optimal swelling and degradation properties. In vitro studies demonstrated that RSD-MSs enhanced bone marrow mesenchymal stem cells (BMSCs) proliferation, adhesion, and chondrogenic differentiation. Transcriptomic analysis showed RSD-MSs induced chondrogenesis mainly through integrin-mediated adhesion pathways and glycosaminoglycan biosynthesis. Moreover, in vivo studies showed that seeding BMSCs onto RSD-MSs to create cartilage organoid precursors (COPs) significantly enhanced cartilage regeneration. In conclusion, RSD-MS was an ideal candidate for the construction and long-term cultivation of cartilage organoids, offering an innovative strategy and material choice for cartilage regeneration and tissue engineering.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.