In Staphylococcus aureus, the acyl-CoA synthetase MbcS supports branched-chain fatty acid synthesis from carboxylic acid and aldehyde precursors.

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Microbiology Pub Date : 2024-05-01 Epub Date: 2024-02-16 DOI:10.1111/mmi.15237
Marcelle C Dos Santos Ferreira, Augustus Pendleton, Won-Sik Yeo, Fabiana C Málaga Gadea, Danna Camelo, Maeve McGuire, Shaun R Brinsmade
{"title":"In Staphylococcus aureus, the acyl-CoA synthetase MbcS supports branched-chain fatty acid synthesis from carboxylic acid and aldehyde precursors.","authors":"Marcelle C Dos Santos Ferreira, Augustus Pendleton, Won-Sik Yeo, Fabiana C Málaga Gadea, Danna Camelo, Maeve McGuire, Shaun R Brinsmade","doi":"10.1111/mmi.15237","DOIUrl":null,"url":null,"abstract":"<p><p>In the human pathogen Staphylococcus aureus, branched-chain fatty acids (BCFAs) are the most abundant fatty acids in membrane phospholipids. Strains deficient for BCFAs synthesis experience auxotrophy in laboratory culture and attenuated virulence during infection. Furthermore, the membrane of S. aureus is among the main targets for antibiotic therapy. Therefore, determining the mechanisms involved in BCFAs synthesis is critical to manage S. aureus infections. Here, we report that the overexpression of SAUSA300_2542 (annotated to encode an acyl-CoA synthetase) restores BCFAs synthesis in strains lacking the canonical biosynthetic pathway catalyzed by the branched-chain α-keto acid dehydrogenase (BKDH) complex. We demonstrate that the acyl-CoA synthetase activity of MbcS activates branched-chain carboxylic acids (BCCAs), and is required by S. aureus to utilize the isoleucine derivative 2-methylbutyraldehyde to restore BCFAs synthesis in S. aureus. Based on the ability of some staphylococci to convert branched-chain aldehydes into their respective BCCAs and our findings demonstrating that branched-chain aldehydes are in fact BCFAs precursors, we propose that MbcS promotes the scavenging of exogenous BCCAs and mediates BCFA synthesis via a de novo alternative pathway.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15237","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the human pathogen Staphylococcus aureus, branched-chain fatty acids (BCFAs) are the most abundant fatty acids in membrane phospholipids. Strains deficient for BCFAs synthesis experience auxotrophy in laboratory culture and attenuated virulence during infection. Furthermore, the membrane of S. aureus is among the main targets for antibiotic therapy. Therefore, determining the mechanisms involved in BCFAs synthesis is critical to manage S. aureus infections. Here, we report that the overexpression of SAUSA300_2542 (annotated to encode an acyl-CoA synthetase) restores BCFAs synthesis in strains lacking the canonical biosynthetic pathway catalyzed by the branched-chain α-keto acid dehydrogenase (BKDH) complex. We demonstrate that the acyl-CoA synthetase activity of MbcS activates branched-chain carboxylic acids (BCCAs), and is required by S. aureus to utilize the isoleucine derivative 2-methylbutyraldehyde to restore BCFAs synthesis in S. aureus. Based on the ability of some staphylococci to convert branched-chain aldehydes into their respective BCCAs and our findings demonstrating that branched-chain aldehydes are in fact BCFAs precursors, we propose that MbcS promotes the scavenging of exogenous BCCAs and mediates BCFA synthesis via a de novo alternative pathway.

Abstract Image

在金黄色葡萄球菌中,酰基-CoA 合成酶 MbcS 支持从羧酸和醛前体合成支链脂肪酸。
在人类病原体金黄色葡萄球菌中,支链脂肪酸(BCFA)是膜磷脂中最丰富的脂肪酸。缺乏 BCFAs 合成能力的菌株在实验室培养中会出现辅助营养不良,在感染过程中毒性减弱。此外,金黄色葡萄球菌的膜是抗生素治疗的主要目标之一。因此,确定参与 BCFAs 合成的机制对于控制金黄色葡萄球菌感染至关重要。在这里,我们报告了在缺乏支链α-酮酸脱氢酶(BKDH)复合物催化的典型生物合成途径的菌株中,过表达 SAUSA300_2542(注释为编码酰基-CoA 合成酶)可恢复 BCFAs 的合成。我们证明,MbcS 的酰基-CoA 合成酶活性可激活支链羧酸(BCCAs),金黄色葡萄球菌需要它来利用异亮氨酸衍生物 2-甲基丁醛来恢复金黄色葡萄球菌中 BCFAs 的合成。基于一些葡萄球菌能够将支链醛转化为相应的 BCCAs,以及我们的研究结果表明支链醛实际上是 BCFAs 的前体,我们认为 MbcS 能够促进外源 BCCAs 的清除,并通过一种新的替代途径介导 BCFAs 的合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信