{"title":"The effect of tessellation on stiffness in the hyoid arch of elasmobranchs","authors":"Cheryl Wilga, Elizabeth Dumont, Lara Ferry","doi":"10.1002/jmor.21681","DOIUrl":null,"url":null,"abstract":"<p>Tessellated cartilage forms much of the skeleton of sharks and rays, in contrast to most other aquatic vertebrates who possess a skeleton of bone. Interestingly, many species of sharks and rays also regularly generate exceptionally high forces in the execution of day-to-day activities, such as when feeding on bony fish, mammals, and hard-shelled invertebrates. Tessellated cartilage differs from other types of cartilage in that they are covered by an outer layer of small mineralized tiles (tesserae) that are connected by fibrous connective tissue. Tesserae, therefore, are hypothesized to play a role in stiffening the cartilaginous skeleton for food capture and other activities that require the generation of high forces. In this study, the hyomandibula and ceratohyal cartilages, which support the jaw and throat regions of sharks and rays, were tested under compressive load in a material testing system to determine the contribution of tesserae to stiffness. Previous hypotheses suggest an abrupt upward shift in the slope of the stress–strain curve in tessellated materials due to collision of tesserae. Young's Modulus (E) was calculated and used to evaluate cartilage stiffness in a range of elasmobranch species. Our results revealed that there was an abrupt shift in Young's Modulus for elements loaded in compression. We postulate that this shift, characterized by an inflection point in the stress–strain curve, is the result of the tesserae approaching one another and compressing the intervening fibrous tissue, supporting the hypothesis that tesserae function to stiffen these cartilages under compressive loading regimes. Using published data for nontessellated cartilage for comparison, we show that this shift is, as expected, unique to tessellated cartilage.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Morphology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmor.21681","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tessellated cartilage forms much of the skeleton of sharks and rays, in contrast to most other aquatic vertebrates who possess a skeleton of bone. Interestingly, many species of sharks and rays also regularly generate exceptionally high forces in the execution of day-to-day activities, such as when feeding on bony fish, mammals, and hard-shelled invertebrates. Tessellated cartilage differs from other types of cartilage in that they are covered by an outer layer of small mineralized tiles (tesserae) that are connected by fibrous connective tissue. Tesserae, therefore, are hypothesized to play a role in stiffening the cartilaginous skeleton for food capture and other activities that require the generation of high forces. In this study, the hyomandibula and ceratohyal cartilages, which support the jaw and throat regions of sharks and rays, were tested under compressive load in a material testing system to determine the contribution of tesserae to stiffness. Previous hypotheses suggest an abrupt upward shift in the slope of the stress–strain curve in tessellated materials due to collision of tesserae. Young's Modulus (E) was calculated and used to evaluate cartilage stiffness in a range of elasmobranch species. Our results revealed that there was an abrupt shift in Young's Modulus for elements loaded in compression. We postulate that this shift, characterized by an inflection point in the stress–strain curve, is the result of the tesserae approaching one another and compressing the intervening fibrous tissue, supporting the hypothesis that tesserae function to stiffen these cartilages under compressive loading regimes. Using published data for nontessellated cartilage for comparison, we show that this shift is, as expected, unique to tessellated cartilage.
期刊介绍:
The Journal of Morphology welcomes articles of original research in cytology, protozoology, embryology, and general morphology. Articles generally should not exceed 35 printed pages. Preliminary notices or articles of a purely descriptive morphological or taxonomic nature are not included. No paper which has already been published will be accepted, nor will simultaneous publications elsewhere be allowed.
The Journal of Morphology publishes research in functional, comparative, evolutionary and developmental morphology from vertebrates and invertebrates. Human and veterinary anatomy or paleontology are considered when an explicit connection to neontological animal morphology is presented, and the paper contains relevant information for the community of animal morphologists. Based on our long tradition, we continue to seek publishing the best papers in animal morphology.