Justin E. Campbell, O. Kennedy Rhoades, Calvin J. Munson, Andrew H. Altieri, James G. Douglass, Kenneth L. Heck, Valerie J. Paul, Anna R. Armitage, Savanna C. Barry, Enrique Bethel, Lindsey Christ, Marjolijn J. A. Christianen, Grace Dodillet, Katrina Dutton, James W. Fourqurean, Thomas K. Frazer, Bethany M. Gaffey, Rachael Glazner, Janelle A. Goeke, Rancel Grana-Valdes, Victoria J. Jenkins, Olivier A. A. Kramer, Samantha T. Linhardt, Charles W. Martin, Isis G. Martinez Lopez, Ashley M. McDonald, Vivienne A. Main, Sarah A. Manuel, Candela Marco-Méndez, Duncan A. O’Brien, Owen R. O’Shea, Christopher J. Patrick, Clare Peabody, Laura K. Reynolds, Alex Rodriguez, Lucia M. Rodriguez Bravo, Amanda Sang, Yvonne Sawall, Khalil Smith, Fee O. H. Smulders, Uriah Sun, Jamie E. Thompson, Brigitta van Tussenbroek, William L. Wied
{"title":"Herbivore effects increase with latitude across the extent of a foundational seagrass","authors":"Justin E. Campbell, O. Kennedy Rhoades, Calvin J. Munson, Andrew H. Altieri, James G. Douglass, Kenneth L. Heck, Valerie J. Paul, Anna R. Armitage, Savanna C. Barry, Enrique Bethel, Lindsey Christ, Marjolijn J. A. Christianen, Grace Dodillet, Katrina Dutton, James W. Fourqurean, Thomas K. Frazer, Bethany M. Gaffey, Rachael Glazner, Janelle A. Goeke, Rancel Grana-Valdes, Victoria J. Jenkins, Olivier A. A. Kramer, Samantha T. Linhardt, Charles W. Martin, Isis G. Martinez Lopez, Ashley M. McDonald, Vivienne A. Main, Sarah A. Manuel, Candela Marco-Méndez, Duncan A. O’Brien, Owen R. O’Shea, Christopher J. Patrick, Clare Peabody, Laura K. Reynolds, Alex Rodriguez, Lucia M. Rodriguez Bravo, Amanda Sang, Yvonne Sawall, Khalil Smith, Fee O. H. Smulders, Uriah Sun, Jamie E. Thompson, Brigitta van Tussenbroek, William L. Wied","doi":"10.1038/s41559-024-02336-5","DOIUrl":null,"url":null,"abstract":"Climate change is altering the functioning of foundational ecosystems. While the direct effects of warming are expected to influence individual species, the indirect effects of warming on species interactions remain poorly understood. In marine systems, as tropical herbivores undergo poleward range expansion, they may change food web structure and alter the functioning of key habitats. While this process (‘tropicalization’) has been documented within declining kelp forests, we have a limited understanding of how this process might unfold across other systems. Here we use a network of sites spanning 23° of latitude to explore the effects of increased herbivory (simulated via leaf clipping) on the structure of a foundational marine plant (turtlegrass). By working across its geographic range, we also show how gradients in light, temperature and nutrients modified plant responses. We found that turtlegrass near its northern boundary was increasingly affected (reduced productivity) by herbivory and that this response was driven by latitudinal gradients in light (low insolation at high latitudes). By contrast, low-latitude meadows tolerated herbivory due to high insolation which enhanced plant carbohydrates. We show that as herbivores undergo range expansion, turtlegrass meadows at their northern limit display reduced resilience and may be under threat of ecological collapse. Conducting a simulated turtlegrass herbivory experiment across 650 experimental plots and 13 seagrass meadows, the authors show that the negative effects of herbivory increase with latitude, driven by low levels of light insolation at high latitudes.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 4","pages":"663-675"},"PeriodicalIF":13.9000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41559-024-02336-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is altering the functioning of foundational ecosystems. While the direct effects of warming are expected to influence individual species, the indirect effects of warming on species interactions remain poorly understood. In marine systems, as tropical herbivores undergo poleward range expansion, they may change food web structure and alter the functioning of key habitats. While this process (‘tropicalization’) has been documented within declining kelp forests, we have a limited understanding of how this process might unfold across other systems. Here we use a network of sites spanning 23° of latitude to explore the effects of increased herbivory (simulated via leaf clipping) on the structure of a foundational marine plant (turtlegrass). By working across its geographic range, we also show how gradients in light, temperature and nutrients modified plant responses. We found that turtlegrass near its northern boundary was increasingly affected (reduced productivity) by herbivory and that this response was driven by latitudinal gradients in light (low insolation at high latitudes). By contrast, low-latitude meadows tolerated herbivory due to high insolation which enhanced plant carbohydrates. We show that as herbivores undergo range expansion, turtlegrass meadows at their northern limit display reduced resilience and may be under threat of ecological collapse. Conducting a simulated turtlegrass herbivory experiment across 650 experimental plots and 13 seagrass meadows, the authors show that the negative effects of herbivory increase with latitude, driven by low levels of light insolation at high latitudes.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.