{"title":"Renal ischemia and reperfusion impact the purinergic signaling in a vascular bed distant from the injured site","authors":"Jeferson Stabile , Raquel Silva Neres-Santos , Isabela Dorta Molina Hernandes , Carolina Victória Cruz Junho , Geovane Felippe Alves , Isabella Cardoso Silva , Marcela Sorelli Carneiro-Ramos , Cristina Ribas Fürstenau","doi":"10.1016/j.biochi.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><p>Acute kidney injury (AKI) is a public health problem and represents a risk factor for cardiovascular diseases (CVD) and vascular damage. This study aimed to investigate the impact of AKI on purinergic components in mice aorta. Main methods: The kidney ischemia was achieved by the occlusion of the left kidney pedicle for 60 min, followed by reperfusion for 8 (IR8) and 15 (IR15) days. Renal function was assessed through biochemical assays, while gene expression levels were evaluated by RT-qPCR. Key findings: Analyses of renal parameters showed renal remodeling through mass loss in the left kidney and hypertrophy of the right kidney in the IR15 group. Furthermore, after 15 days, local inflammation was evidenced in the aorta. Moreover, the aorta purinergic components were significantly impacted by the renal ischemia and reperfusion model, with increases in gene expression of the pro-inflammatory purinoceptors P2Y1, P2Y2, P2Y6, and P2X4, potentially contributing to the vessel inflammation. The expression of NTPDase2 and ecto-5′-nucleotidase were also significantly increased in the aorta of the same group. In addition, both ATP and AMP hydrolysis were significantly increased in the aorta from IR15 animals, driving the entire purinergic cascade to the production of the anti-inflammatory adenosine. Significance: In short, this is the first time that inflammation of the aorta due to AKI was shown to have an impact on purinergic signaling components, with emphasis on the adenosinergic pathway. This seems to be closely implicated in the establishment of vascular inflammation in this model of AKI and deserves to be further investigated.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"222 ","pages":"Pages 37-44"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000397/pdfft?md5=baca31c66f4512ff8951bd7eaf65f05e&pid=1-s2.0-S0300908424000397-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424000397","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Acute kidney injury (AKI) is a public health problem and represents a risk factor for cardiovascular diseases (CVD) and vascular damage. This study aimed to investigate the impact of AKI on purinergic components in mice aorta. Main methods: The kidney ischemia was achieved by the occlusion of the left kidney pedicle for 60 min, followed by reperfusion for 8 (IR8) and 15 (IR15) days. Renal function was assessed through biochemical assays, while gene expression levels were evaluated by RT-qPCR. Key findings: Analyses of renal parameters showed renal remodeling through mass loss in the left kidney and hypertrophy of the right kidney in the IR15 group. Furthermore, after 15 days, local inflammation was evidenced in the aorta. Moreover, the aorta purinergic components were significantly impacted by the renal ischemia and reperfusion model, with increases in gene expression of the pro-inflammatory purinoceptors P2Y1, P2Y2, P2Y6, and P2X4, potentially contributing to the vessel inflammation. The expression of NTPDase2 and ecto-5′-nucleotidase were also significantly increased in the aorta of the same group. In addition, both ATP and AMP hydrolysis were significantly increased in the aorta from IR15 animals, driving the entire purinergic cascade to the production of the anti-inflammatory adenosine. Significance: In short, this is the first time that inflammation of the aorta due to AKI was shown to have an impact on purinergic signaling components, with emphasis on the adenosinergic pathway. This seems to be closely implicated in the establishment of vascular inflammation in this model of AKI and deserves to be further investigated.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.