Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection.

Dementia and neurocognitive disorders Pub Date : 2024-01-01 Epub Date: 2024-01-22 DOI:10.12779/dnd.2024.23.1.1
Chan-Young Park, Minsoo Kim, YongSoo Shim, Nayoung Ryoo, Hyunjoo Choi, Ho Tae Jeong, Gihyun Yun, Hunboc Lee, Hyungryul Kim, SangYun Kim, Young Chul Youn
{"title":"Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer's Disease Detection.","authors":"Chan-Young Park, Minsoo Kim, YongSoo Shim, Nayoung Ryoo, Hyunjoo Choi, Ho Tae Jeong, Gihyun Yun, Hunboc Lee, Hyungryul Kim, SangYun Kim, Young Chul Youn","doi":"10.12779/dnd.2024.23.1.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD).</p><p><strong>Methods: </strong>This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma.</p><p><strong>Results: </strong>A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset.</p><p><strong>Conclusions: </strong>Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.</p>","PeriodicalId":72779,"journal":{"name":"Dementia and neurocognitive disorders","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dementia and neurocognitive disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12779/dnd.2024.23.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer's disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer's disease dementia (ADD).

Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma.

Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset.

Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.

利用声音的力量:用于阿尔茨海默病检测的深度神经网络模型。
背景和目的:语音反映大脑功能,具有分析和了解大脑功能的潜力,尤其是在认知障碍(CI)和阿尔茨海默病(AD)的背景下。本研究利用语音数据来区分正常认知与认知障碍或阿尔茨海默病痴呆(ADD):本研究招募了 3 组受试者:1)52 名主观认知能力下降的受试者;2)110 名轻度 CI 受试者;3)59 名 ADD 受试者。结果:一个深度神经网络(DNN)能识别出所有的声音特征,并对这些特征进行分析:深度神经网络(DNN)模型显示出良好的性能,在 10 次试验中,预测 ADD 的准确率约为 81%,在对未见过的测试数据集进行评估时,准确率提高到平均值约为 82.0%±1.6%:结论:虽然研究结果并未达到临床工具所需的准确度水平,但它们为语音数据在认知状态评估中的潜在应用提供了令人信服的概念证明。使用语音的 DNN 算法为早期检测注意力缺失症提供了一种很有前景的方法。它们可以提高诊断的准确性和可及性,最终为患者带来更好的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信