{"title":"Auditory Spatial Bisection of Blind and Normally Sighted Individuals in Free Field and Virtual Acoustics.","authors":"Stefanie Goicke, Florian Denk, Tim Jürgens","doi":"10.1177/23312165241230947","DOIUrl":null,"url":null,"abstract":"<p><p>Sound localization is an important ability in everyday life. This study investigates the influence of vision and presentation mode on auditory spatial bisection performance. Subjects were asked to identify the smaller perceived distance between three consecutive stimuli that were either presented via loudspeakers (free field) or via headphones after convolution with generic head-related impulse responses (binaural reproduction). Thirteen azimuthal sound incidence angles on a circular arc segment of ±24° at a radius of 3 m were included in three regions of space (front, rear, and laterally left). Twenty normally sighted (measured both sighted and blindfolded) and eight blind persons participated. Results showed no significant differences with respect to visual condition, but strong effects of sound direction and presentation mode. Psychometric functions were steepest in frontal space and indicated median spatial bisection thresholds of 11°-14°. Thresholds increased significantly in rear (11°-17°) and laterally left (20°-28°) space in free field. Individual pinna and torso cues, as available only in free field presentation, improved the performance of all participants compared to binaural reproduction. Especially in rear space, auditory spatial bisection thresholds were three to four times higher (i.e., poorer) using binaural reproduction than in free field. The results underline the importance of individual auditory spatial cues for spatial bisection, irrespective of access to vision, which indicates that vision may not be strictly necessary to calibrate allocentric spatial hearing.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165241230947","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sound localization is an important ability in everyday life. This study investigates the influence of vision and presentation mode on auditory spatial bisection performance. Subjects were asked to identify the smaller perceived distance between three consecutive stimuli that were either presented via loudspeakers (free field) or via headphones after convolution with generic head-related impulse responses (binaural reproduction). Thirteen azimuthal sound incidence angles on a circular arc segment of ±24° at a radius of 3 m were included in three regions of space (front, rear, and laterally left). Twenty normally sighted (measured both sighted and blindfolded) and eight blind persons participated. Results showed no significant differences with respect to visual condition, but strong effects of sound direction and presentation mode. Psychometric functions were steepest in frontal space and indicated median spatial bisection thresholds of 11°-14°. Thresholds increased significantly in rear (11°-17°) and laterally left (20°-28°) space in free field. Individual pinna and torso cues, as available only in free field presentation, improved the performance of all participants compared to binaural reproduction. Especially in rear space, auditory spatial bisection thresholds were three to four times higher (i.e., poorer) using binaural reproduction than in free field. The results underline the importance of individual auditory spatial cues for spatial bisection, irrespective of access to vision, which indicates that vision may not be strictly necessary to calibrate allocentric spatial hearing.
Trends in HearingAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍:
Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.