Alex Goraltchouk, Svetlana Mankovskaya, Tatjana Kuznetsova, Zhanna Hladkova, Judith M Hollander, Francesco Luppino, Alexey Seregin
{"title":"Comparative evaluation of rhFGF18 and rhGDF11 treatment in a transient ischemia stroke model.","authors":"Alex Goraltchouk, Svetlana Mankovskaya, Tatjana Kuznetsova, Zhanna Hladkova, Judith M Hollander, Francesco Luppino, Alexey Seregin","doi":"10.3233/RNN-231347","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pharmacological treatments for ischemic stroke remain limited to thrombolysis, which is associated with increased risk of potentially fatal hemorrhage. Treatments with Recombinant Human Fibroblast Growth Factor 18 (rhFGF18) and Growth and Differentiation Factor 11 (rhGDF11) appear promising based on different preclinical models. The goal of this study was to compare the effects of rhFGF18 and rhGDF11 directly on survival, behavioral deficits, and histological fingerprint of cerebral ischemia in the Wistar rat middle cerebral artery occlusion (MCAO) model of stroke.</p><p><strong>Methods: </strong>Ischemia-reperfusion injury was induced using a 2-hour transient MCAO. Animals were administered rhFGF18 (infusion), rhGDF11 (multi-injection), or Phosphate Buffered Saline (PBS) vehicle control and followed for 42 days. Motor-Cognitive deficits were evaluated using the Morris Water Maze at Days 0 (pre-MCAO), 7, 21, and 42. Histopathological assessments were performed on Days 21 and 42.</p><p><strong>Results: </strong>Day 7 post-ischemia water maze performance times increased 38.3%, 2.1%, and 23.1% for PBS, rhFGF18, and rhGDF11-treated groups, respectively. Fraction of neurons with abnormal morphology (chromatolysis, pyknotic nuclei, somal degeneration) decreased in all groups toward Day 42 and was lowest for rhFGF18. AChE-positive fiber density and activity increased over time in the rhFGF18 group, remained unchanged in the rhGDF11 treatment arm, and declined in the PBS control. Metabolic increases were greatest in rhGDF11 treated animals, with both rhFGF18 and rhGDF11 achieving improvements over PBS, as evidenced by increased succinate dehydrogenase and lactate dehydrogenase activity. Finally, rhFGF18 treatment exhibited a trend for reduced mortality relative to PBS (5.6%, 95% CI [27.3%, 0.1% ] vs. 22.2%, 95% CI [47.6%, 6.4% ]).</p><p><strong>Conclusions: </strong>rhFGF18 treatment appears promising in improving survival and promoting motor-cognitive recovery following cerebral ischemia-reperfusion injury.</p>","PeriodicalId":21130,"journal":{"name":"Restorative neurology and neuroscience","volume":"41 5-6","pages":"257-270"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restorative neurology and neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/RNN-231347","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pharmacological treatments for ischemic stroke remain limited to thrombolysis, which is associated with increased risk of potentially fatal hemorrhage. Treatments with Recombinant Human Fibroblast Growth Factor 18 (rhFGF18) and Growth and Differentiation Factor 11 (rhGDF11) appear promising based on different preclinical models. The goal of this study was to compare the effects of rhFGF18 and rhGDF11 directly on survival, behavioral deficits, and histological fingerprint of cerebral ischemia in the Wistar rat middle cerebral artery occlusion (MCAO) model of stroke.
Methods: Ischemia-reperfusion injury was induced using a 2-hour transient MCAO. Animals were administered rhFGF18 (infusion), rhGDF11 (multi-injection), or Phosphate Buffered Saline (PBS) vehicle control and followed for 42 days. Motor-Cognitive deficits were evaluated using the Morris Water Maze at Days 0 (pre-MCAO), 7, 21, and 42. Histopathological assessments were performed on Days 21 and 42.
Results: Day 7 post-ischemia water maze performance times increased 38.3%, 2.1%, and 23.1% for PBS, rhFGF18, and rhGDF11-treated groups, respectively. Fraction of neurons with abnormal morphology (chromatolysis, pyknotic nuclei, somal degeneration) decreased in all groups toward Day 42 and was lowest for rhFGF18. AChE-positive fiber density and activity increased over time in the rhFGF18 group, remained unchanged in the rhGDF11 treatment arm, and declined in the PBS control. Metabolic increases were greatest in rhGDF11 treated animals, with both rhFGF18 and rhGDF11 achieving improvements over PBS, as evidenced by increased succinate dehydrogenase and lactate dehydrogenase activity. Finally, rhFGF18 treatment exhibited a trend for reduced mortality relative to PBS (5.6%, 95% CI [27.3%, 0.1% ] vs. 22.2%, 95% CI [47.6%, 6.4% ]).
Conclusions: rhFGF18 treatment appears promising in improving survival and promoting motor-cognitive recovery following cerebral ischemia-reperfusion injury.
期刊介绍:
This interdisciplinary journal publishes papers relating to the plasticity and response of the nervous system to accidental or experimental injuries and their interventions, transplantation, neurodegenerative disorders and experimental strategies to improve regeneration or functional recovery and rehabilitation. Experimental and clinical research papers adopting fresh conceptual approaches are encouraged. The overriding criteria for publication are novelty, significant experimental or clinical relevance and interest to a multidisciplinary audience. Experiments on un-anesthetized animals should conform with the standards for the use of laboratory animals as established by the Institute of Laboratory Animal Resources, US National Academy of Sciences. Experiments in which paralytic agents are used must be justified. Patient identity should be concealed. All manuscripts are sent out for blind peer review to editorial board members or outside reviewers. Restorative Neurology and Neuroscience is a member of Neuroscience Peer Review Consortium.