Periodontal Ligament Stem Cell-Derived Exosomes Regulate Muc5ac Expression in Rat Conjunctival Goblet Cells via Regulating Macrophages Toward an Anti-Inflammatory Phenotype.
Yiqian Ren, Yani Wang, Na An, Xianghua Xiao, Shiyin Pan, Bei Wang, Xianning Liu, Yao Wang
{"title":"Periodontal Ligament Stem Cell-Derived Exosomes Regulate Muc5ac Expression in Rat Conjunctival Goblet Cells via Regulating Macrophages Toward an Anti-Inflammatory Phenotype.","authors":"Yiqian Ren, Yani Wang, Na An, Xianghua Xiao, Shiyin Pan, Bei Wang, Xianning Liu, Yao Wang","doi":"10.1080/09273948.2024.2311981","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several studies have reported the protective effects of mesenchymal stem cell-derived exosomes (MSC-Exos) in reducing inflammation and decreasing conjunctival goblet cell (CGC) loss in dry eye disease. However, whether MSC-Exos provide anti-inflammatory profiles in macrophages, thus contributing to CGC protection, has remained elusive.</p><p><strong>Methods: </strong>Macrophages were incubated with PKH26-labeled periodontal ligament mesenchymal stem cell-derived exosomes (PDLSC-Exos) for 12 h, and uptake of PDLSC-Exos by macrophages was observed by a confocal fluorescence microscope. The mRNA expression of TNF-α, IL-10, and Arg1 was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of TNF-α and IL-10 were quantified using western blotting. Then, CGCs were exposed to different macrophage supernatants and qRT-PCR was used to detect the Muc5ac mRNA expression of CGCs in response to or absence of cholinergic stimulation. ELISA was used to determine the Muc5ac secretion of CGCs in response to cholinergic stimulation.</p><p><strong>Results: </strong>The uptake of PDLSC-Exos by M1 macrophages facilitates M2 macrophage polarization with the elevated expressions of IL-10 and Arg1. In macrophage supernatant-treated CGCs systems, PDLSC-Exo-treated M1 macrophage supernatant significantly enhanced the Muc5ac expression of CGCs in response to, or in the absence of, cholinergic stimulation, while the addition of PDLSC-Exos to the control macrophage supernatant did not generate a change in Muc5ac expression. Conversely, the addition of PDLSC-Exos to the diluted control macrophage supernatant induced a significant increase in Muc5ac expression.</p><p><strong>Conclusion: </strong>PDLSC-Exos could protect CGCs against M1 macrophage-mediated inflammation, and the protective effects of PDLSC-Exos are partly attributable to their effects on M1 macrophages.</p>","PeriodicalId":19406,"journal":{"name":"Ocular Immunology and Inflammation","volume":" ","pages":"1990-1999"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocular Immunology and Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09273948.2024.2311981","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Several studies have reported the protective effects of mesenchymal stem cell-derived exosomes (MSC-Exos) in reducing inflammation and decreasing conjunctival goblet cell (CGC) loss in dry eye disease. However, whether MSC-Exos provide anti-inflammatory profiles in macrophages, thus contributing to CGC protection, has remained elusive.
Methods: Macrophages were incubated with PKH26-labeled periodontal ligament mesenchymal stem cell-derived exosomes (PDLSC-Exos) for 12 h, and uptake of PDLSC-Exos by macrophages was observed by a confocal fluorescence microscope. The mRNA expression of TNF-α, IL-10, and Arg1 was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of TNF-α and IL-10 were quantified using western blotting. Then, CGCs were exposed to different macrophage supernatants and qRT-PCR was used to detect the Muc5ac mRNA expression of CGCs in response to or absence of cholinergic stimulation. ELISA was used to determine the Muc5ac secretion of CGCs in response to cholinergic stimulation.
Results: The uptake of PDLSC-Exos by M1 macrophages facilitates M2 macrophage polarization with the elevated expressions of IL-10 and Arg1. In macrophage supernatant-treated CGCs systems, PDLSC-Exo-treated M1 macrophage supernatant significantly enhanced the Muc5ac expression of CGCs in response to, or in the absence of, cholinergic stimulation, while the addition of PDLSC-Exos to the control macrophage supernatant did not generate a change in Muc5ac expression. Conversely, the addition of PDLSC-Exos to the diluted control macrophage supernatant induced a significant increase in Muc5ac expression.
Conclusion: PDLSC-Exos could protect CGCs against M1 macrophage-mediated inflammation, and the protective effects of PDLSC-Exos are partly attributable to their effects on M1 macrophages.
期刊介绍:
Ocular Immunology & Inflammation ranks 18 out of 59 in the Ophthalmology Category.Ocular Immunology and Inflammation is a peer-reviewed, scientific publication that welcomes the submission of original, previously unpublished manuscripts directed to ophthalmologists and vision scientists. Published bimonthly, the journal provides an international medium for basic and clinical research reports on the ocular inflammatory response and its control by the immune system. The journal publishes original research papers, case reports, reviews, letters to the editor, meeting abstracts, and invited editorials.