{"title":"A novel variation of <i>TaGW2-6B</i> increases grain weight without penalty in grain protein content in wheat (<i>Triticum aestivum</i> L.).","authors":"Chan Bi, Chaoxiong Wei, Jinghui Li, Shaozhe Wen, Huanhuan Zhao, Jiazheng Yu, Xintian Shi, Yuan Zhang, Qiaofeng Liu, Yufeng Zhang, Baoyun Li, Mingshan You","doi":"10.1007/s11032-024-01455-y","DOIUrl":null,"url":null,"abstract":"<p><p>Yield and quality are two crucial breeding objects of wheat therein grain weight and grain protein content (GPC) are two key relevant factors correspondingly. Investigations of their genetic mechanisms represent special significance for breeding. In this study, 199 F<sub>2</sub> plants and corresponding F<sub>2:3</sub> families derived from Nongda3753 (ND3753) and its EMS-generated mutant 564 (M564) were used to investigate the genetic basis of larger grain and higher GPC of M564. QTL analysis identified a total of 33 environmentally stable QTLs related to thousand grain weight (TGW), grain area (GA), grain circle (GC), grain length (GL), grain width (GW), and GPC on chromosomes 1B, 2A, 2B, 4D, 6B, and 7D, respectively, among which <i>QGw.cau-6B.1</i>, <i>QTgw.cau-6B.1</i>, <i>QGa.cau-6B.1</i>, and <i>QGc.cau-6B.1</i> shared overlap confidence interval on chromosome 6B. This interval contained the <i>TaGW2</i> gene playing the same role as the QTLs, so <i>TaGW2-6B</i> was cloned and sequenced. Sequence alignment revealed two G/A SNPs between two parents, among which the SNP in the seventh exon led to a premature termination in M564. A KASP marker was developed based on the SNP, and single-marker analysis on biparental populations showed that the mutant allele could significantly increase GW and TGW, but had no effect on GPC. Distribution detection of the mutant allele through KASP marker genotyping and sequence alignment against databases ascertained that no materials harbored this allele within natural populations. This allele was subsequently introduced into three different varieties through molecular marker-assisted backcrossing, and it was revealed that the allele had a significant effect on simultaneously increasing GW, TGW, and even GPC in all of three backgrounds. Summing up the above, it could be concluded that a novel elite allele of <i>TaGW2-6B</i> was artificially created and might play an important role in wheat breeding for high yield and quality.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01455-y.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"44 2","pages":"15"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01455-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Yield and quality are two crucial breeding objects of wheat therein grain weight and grain protein content (GPC) are two key relevant factors correspondingly. Investigations of their genetic mechanisms represent special significance for breeding. In this study, 199 F2 plants and corresponding F2:3 families derived from Nongda3753 (ND3753) and its EMS-generated mutant 564 (M564) were used to investigate the genetic basis of larger grain and higher GPC of M564. QTL analysis identified a total of 33 environmentally stable QTLs related to thousand grain weight (TGW), grain area (GA), grain circle (GC), grain length (GL), grain width (GW), and GPC on chromosomes 1B, 2A, 2B, 4D, 6B, and 7D, respectively, among which QGw.cau-6B.1, QTgw.cau-6B.1, QGa.cau-6B.1, and QGc.cau-6B.1 shared overlap confidence interval on chromosome 6B. This interval contained the TaGW2 gene playing the same role as the QTLs, so TaGW2-6B was cloned and sequenced. Sequence alignment revealed two G/A SNPs between two parents, among which the SNP in the seventh exon led to a premature termination in M564. A KASP marker was developed based on the SNP, and single-marker analysis on biparental populations showed that the mutant allele could significantly increase GW and TGW, but had no effect on GPC. Distribution detection of the mutant allele through KASP marker genotyping and sequence alignment against databases ascertained that no materials harbored this allele within natural populations. This allele was subsequently introduced into three different varieties through molecular marker-assisted backcrossing, and it was revealed that the allele had a significant effect on simultaneously increasing GW, TGW, and even GPC in all of three backgrounds. Summing up the above, it could be concluded that a novel elite allele of TaGW2-6B was artificially created and might play an important role in wheat breeding for high yield and quality.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01455-y.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.