Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces.

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
David T Limmer, Andreas W Götz, Timothy H Bertram, Gilbert M Nathanson
{"title":"Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces.","authors":"David T Limmer, Andreas W Götz, Timothy H Bertram, Gilbert M Nathanson","doi":"10.1146/annurev-physchem-083122-121620","DOIUrl":null,"url":null,"abstract":"<p><p>Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N<sub>2</sub>O<sub>5</sub> in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N<sub>2</sub>O<sub>5</sub> is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N<sub>2</sub>O<sub>5</sub> as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO<sub>3</sub>, chlorination to ClNO<sub>2</sub>, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"111-135"},"PeriodicalIF":11.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-083122-121620","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.

水性气溶胶界面化学反应的分子洞察。
大气气溶胶促进了环境气体和溶解物种之间的反应。在此,我们回顾了我们在理论和实验方面为探究这些气体的吸收及其反应机制所做的努力。我们重点介绍 N2O5 在从纯水到复杂混合物等各种溶液中的奇妙行为,之所以选择 N2O5,是因为它在气溶胶介导下的反应对全球臭氧、羟基和甲烷浓度有重大影响。作为一种疏水性、弱溶性和高活性物质,N2O5 是气溶胶界面化学和物理特性的灵敏探针。我们运用现代理论来分析 N2O5 接近纯水和盐水时的归宿,从吸附开始,到水解为 HNO3、氯化为 ClNO2 或蒸发。当添加的离子、有机分子和表面活性剂改变了界面成分和反应速率时,流动反应器和气液散射实验探究了更大的复杂性。我们共同揭示了大气中多相化学的新视角。物理化学年刊》第 75 卷的最终在线出版日期预计为 2024 年 4 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信