Ultrafast Carbothermal Shock Synthesis of Wadsley–Roth Phase Niobium-Based Oxides for Fast-Charging Lithium-Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qilong Wu, Yuanhong Kang, Guanhong Chen, Jianken Chen, Minghui Chen, Wei Li, Zeheng Lv, Huiya Yang, Pengxiang Lin, Yu Qiao, Jinbao Zhao, Yang Yang
{"title":"Ultrafast Carbothermal Shock Synthesis of Wadsley–Roth Phase Niobium-Based Oxides for Fast-Charging Lithium-Ion Batteries","authors":"Qilong Wu,&nbsp;Yuanhong Kang,&nbsp;Guanhong Chen,&nbsp;Jianken Chen,&nbsp;Minghui Chen,&nbsp;Wei Li,&nbsp;Zeheng Lv,&nbsp;Huiya Yang,&nbsp;Pengxiang Lin,&nbsp;Yu Qiao,&nbsp;Jinbao Zhao,&nbsp;Yang Yang","doi":"10.1002/adfm.202315248","DOIUrl":null,"url":null,"abstract":"<p>Wadsley–Roth phase niobium-based oxides show potential as anode candidates for fast-charging lithium-ion batteries. Traditional synthesis methods, however, usually involve a time-consuming calcination process, resulting in poor production efficiency. Herein, a novel carbothermal shock (CTS) method that enables the ultra-fast synthesis of various Wadsley–Roth phase Nb-based oxides within seconds is introduced. The extremely rapid heating rates enabled by CTS alter the reaction mechanism from a sluggish solid-state process to a swift liquid-phase assisted one and drive the chemical reactions away from equilibrium, thereby generating abundant oxygen vacancies and dislocations. Theoretical calculations reveal that oxygen vacancies significantly lower the energy barrier for Li<sup>+</sup> diffusion and enhance the intrinsic electronic conductivity. Moreover, dislocations help convert the surface tensile stress arising from Li<sup>+</sup> intercalation into compressive stress, effectively improving the structural integrity during cycling. Notably, this approach can also be applied to synthesize LiFePO<sub>4</sub> cathode materials under ambient conditions, eliminating the requirement for inert atmospheres. Consequently, the CTS-synthesized Nb<sub>14</sub>W<sub>3</sub>O<sub>44</sub>||LiFePO<sub>4</sub> battery demonstrates reversible structural evolution validated by in situ XRD and exceptional cycling ability (e.g., 0.0065% capacity decay per cycle at 4 A g<sup>−1</sup> over 3000 cycles). Importantly, the Nb<sub>14</sub>W<sub>3</sub>O<sub>44</sub>||LiFePO<sub>4</sub> configuration also shows enhanced thermal stability in the Ah-level pouch cell nail penetration test, confirming its feasibility.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 23","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202315248","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wadsley–Roth phase niobium-based oxides show potential as anode candidates for fast-charging lithium-ion batteries. Traditional synthesis methods, however, usually involve a time-consuming calcination process, resulting in poor production efficiency. Herein, a novel carbothermal shock (CTS) method that enables the ultra-fast synthesis of various Wadsley–Roth phase Nb-based oxides within seconds is introduced. The extremely rapid heating rates enabled by CTS alter the reaction mechanism from a sluggish solid-state process to a swift liquid-phase assisted one and drive the chemical reactions away from equilibrium, thereby generating abundant oxygen vacancies and dislocations. Theoretical calculations reveal that oxygen vacancies significantly lower the energy barrier for Li+ diffusion and enhance the intrinsic electronic conductivity. Moreover, dislocations help convert the surface tensile stress arising from Li+ intercalation into compressive stress, effectively improving the structural integrity during cycling. Notably, this approach can also be applied to synthesize LiFePO4 cathode materials under ambient conditions, eliminating the requirement for inert atmospheres. Consequently, the CTS-synthesized Nb14W3O44||LiFePO4 battery demonstrates reversible structural evolution validated by in situ XRD and exceptional cycling ability (e.g., 0.0065% capacity decay per cycle at 4 A g−1 over 3000 cycles). Importantly, the Nb14W3O44||LiFePO4 configuration also shows enhanced thermal stability in the Ah-level pouch cell nail penetration test, confirming its feasibility.

Abstract Image

Abstract Image

用于快速充电锂离子电池的瓦兹利-罗斯相铌基氧化物的超快碳热冲击合成
Wadsley-Roth 相铌基氧化物显示出作为快速充电锂离子电池负极候选材料的潜力。然而,传统的合成方法通常涉及耗时的煅烧过程,导致生产效率低下。本文介绍了一种新型碳热冲击(CTS)方法,该方法可在几秒钟内超高速合成各种瓦兹利-罗斯相铌基氧化物。碳热冲击法实现的极快加热速率改变了反应机制,使其从缓慢的固态过程转变为快速的液相辅助过程,并使化学反应脱离平衡状态,从而产生大量氧空位和位错。理论计算显示,氧空位大大降低了 Li+ 扩散的能量势垒,增强了内在电子导电性。此外,位错有助于将 Li+ 插层产生的表面拉应力转化为压应力,从而有效改善循环过程中的结构完整性。值得注意的是,这种方法还可用于在环境条件下合成 LiFePO4 阴极材料,无需惰性气氛。因此,通过原位 XRD 验证,CTS 合成的 Nb14W3O44||LiFePO4 电池显示出可逆的结构演化和卓越的循环能力(例如,在 4 A g-1 的条件下,循环 3000 次,每次容量衰减 0.0065%)。重要的是,Nb14W3O44||LiFePO4 配置还在 Ah 级袋装电池钉穿透测试中显示出更强的热稳定性,证实了其可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信