Mohammad Jakir Hossain , Rupak Kumar Ghosh , Atanu Kumar Das , Roni Maryana , Yanni Sudiyani , Shambhu Chandra Nath , Rakibul Islam
{"title":"Chemical composition and solubility properties of Bambusa bambos at different ages and height positions","authors":"Mohammad Jakir Hossain , Rupak Kumar Ghosh , Atanu Kumar Das , Roni Maryana , Yanni Sudiyani , Shambhu Chandra Nath , Rakibul Islam","doi":"10.1016/j.bamboo.2024.100062","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable materials are becoming increasingly important due to environmental concerns and the energy crisis. Non-wood resources such as bamboo are being explored as alternatives to wood-based materials to reduce deforestation. However, the chemical properties of these resources determine their usability. This study analyzed the chemical composition and solubility of <em>Bambusa bambos</em> (L.) Voss, a type of bamboo. The effects of age and height position (top, middle, and bottom) on the chemical composition and solubility were also considered. The study followed the standards of TAPPI (Technical Association of the Pulp and Paper Industry) to analyze holocellulose, lignin, and extractive content, and water (hot and cold) and caustic soda (1% NaOH) solubility. The results showed that the chemical composition, i.e., holocellulose, lignin, and extractive, increased while solubility, i.e., cold water, hot water, and NaOH, decreased with the ageing of <em>B. bambos</em>. The average holocellulose, lignin, and extractive contents of three-year-old <em>B. bambos</em> were 70.49%, 27.55%, and 4.54%, respectively. These values were within the range of previous studies, indicating that <em>B. bambos</em> has potential applications in various purposes.</p></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773139124000077/pdfft?md5=8ca8bbf0dba9ca9f60c069ee8a1bfac7&pid=1-s2.0-S2773139124000077-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139124000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable materials are becoming increasingly important due to environmental concerns and the energy crisis. Non-wood resources such as bamboo are being explored as alternatives to wood-based materials to reduce deforestation. However, the chemical properties of these resources determine their usability. This study analyzed the chemical composition and solubility of Bambusa bambos (L.) Voss, a type of bamboo. The effects of age and height position (top, middle, and bottom) on the chemical composition and solubility were also considered. The study followed the standards of TAPPI (Technical Association of the Pulp and Paper Industry) to analyze holocellulose, lignin, and extractive content, and water (hot and cold) and caustic soda (1% NaOH) solubility. The results showed that the chemical composition, i.e., holocellulose, lignin, and extractive, increased while solubility, i.e., cold water, hot water, and NaOH, decreased with the ageing of B. bambos. The average holocellulose, lignin, and extractive contents of three-year-old B. bambos were 70.49%, 27.55%, and 4.54%, respectively. These values were within the range of previous studies, indicating that B. bambos has potential applications in various purposes.