New solution of the non-linear Poisson-Boltzmann differential equation for solid particle dispersions in dissymmetrical electrolytes

Q3 Materials Science
Tayssir Hamieh
{"title":"New solution of the non-linear Poisson-Boltzmann differential equation for solid particle dispersions in dissymmetrical electrolytes","authors":"Tayssir Hamieh","doi":"10.1016/j.jciso.2024.100103","DOIUrl":null,"url":null,"abstract":"<div><p>A new mathematical solution to the non-linear Poisson-Boltzmann differential equation for solid-liquid dispersions in presence of different dissymmetrical electrolytes was given. The analytical expressions of the surface and charge density of solid particles were given. The variations of electrostatic potential <em>ψ</em> (<em>x</em>) and charge density <em>σ</em> (<em>x</em>) of dispersed particles against the distance <em>x</em> were obtained. For colloidal particles in presence of E(m-n) electrolytes with <span><math><mrow><mi>m</mi><mo>≠</mo><mi>n</mi></mrow></math></span> with <span><math><mrow><mi>m</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and for E(2–3) and E(3-2) electrolytes, the mean electrostatic potential as a function of the distance was numerically integrated by Mathematica program version 13.</p><p>The experimental study of silica suspensions in presence with the following electrolytes <span><math><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>N</mi><mi>a</mi></mrow><mn>2</mn></msub><msub><mrow><mi>S</mi><mi>O</mi></mrow><mn>4</mn></msub></mrow></math></span>, <span><math><mrow><mi>C</mi><mi>a</mi><msub><mrow><mi>C</mi><mi>l</mi></mrow><mn>2</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>N</mi><mi>a</mi></mrow><mn>3</mn></msub><msub><mrow><mi>P</mi><mi>O</mi></mrow><mn>4</mn></msub></mrow></math></span>, <span><math><mrow><mi>A</mi><mi>l</mi><msub><mrow><mi>C</mi><mi>l</mi></mrow><mn>3</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>A</mi><mi>l</mi></mrow><mn>2</mn></msub><msub><mrow><mo>(</mo><msub><mrow><mi>S</mi><mi>O</mi></mrow><mn>4</mn></msub><mo>)</mo></mrow><mn>3</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi><mi>a</mi></mrow><mn>3</mn></msub><msub><mrow><mo>(</mo><msub><mrow><mi>P</mi><mi>O</mi></mrow><mn>4</mn></msub><mo>)</mo></mrow><mn>2</mn></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>N</mi><mi>a</mi></mrow><mn>4</mn></msub><msub><mrow><msub><mi>P</mi><mn>2</mn></msub><mi>O</mi></mrow><mn>7</mn></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>N</mi><mi>a</mi></mrow><mn>5</mn></msub><msub><mrow><msub><mi>P</mi><mn>3</mn></msub><mi>O</mi></mrow><mn>10</mn></msub></mrow></math></span> led to confirm the theoretical predictions obtained from the analytical solution of Poisson-Boltzmann equation. The results obtained allowed to determine the surface potential as a function of pH of the suspension and the electrostatic potential versus the distance x. The variations of the dissociation coefficient of silica surfaces were determined. An important effect of the anion and cation valences of the dissymmetrical electrolytes on the surface charge density and potential was highlighted.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"13 ","pages":"Article 100103"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000023/pdfft?md5=2a145a52f361443b6d440aa34e67306f&pid=1-s2.0-S2666934X24000023-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X24000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

A new mathematical solution to the non-linear Poisson-Boltzmann differential equation for solid-liquid dispersions in presence of different dissymmetrical electrolytes was given. The analytical expressions of the surface and charge density of solid particles were given. The variations of electrostatic potential ψ (x) and charge density σ (x) of dispersed particles against the distance x were obtained. For colloidal particles in presence of E(m-n) electrolytes with mn with m3,n3 and for E(2–3) and E(3-2) electrolytes, the mean electrostatic potential as a function of the distance was numerically integrated by Mathematica program version 13.

The experimental study of silica suspensions in presence with the following electrolytes NaCl, Na2SO4, CaCl2, Na3PO4, AlCl3, Al2(SO4)3, Ca3(PO4)2, Na4P2O7 and Na5P3O10 led to confirm the theoretical predictions obtained from the analytical solution of Poisson-Boltzmann equation. The results obtained allowed to determine the surface potential as a function of pH of the suspension and the electrostatic potential versus the distance x. The variations of the dissociation coefficient of silica surfaces were determined. An important effect of the anion and cation valences of the dissymmetrical electrolytes on the surface charge density and potential was highlighted.

Abstract Image

不对称电解质中固体颗粒分散的非线性泊松-波尔兹曼微分方程的新解
对存在不同不对称电解质的固液分散体的非线性泊松-波尔兹曼微分方程给出了新的数学解决方案。给出了固体颗粒表面和电荷密度的解析表达式。得到了分散粒子的静电势 ψ (x) 和电荷密度 σ (x) 随距离 x 的变化。对于存在 E(m-n)电解质(m≠n,m≥3,n≥3)以及 E(2-3)和 E(3-2)电解质的胶体粒子,用 Mathematica 程序第 13 版对平均静电势随距离的变化进行了数值积分。通过对存在以下电解质的二氧化硅悬浮液进行实验研究:NaCl、Na2SO4、CaCl2、Na3PO4、AlCl3、Al2(SO4)3、Ca3(PO4)2、Na4P2O7 和 Na5P3O10。根据所获得的结果,可以确定表面电位与悬浮液 pH 值的函数关系,以及静电电位与距离 x 的关系。不对称电解质的阴阳离子价对表面电荷密度和电势的重要影响得到了强调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JCIS open
JCIS open Physical and Theoretical Chemistry, Colloid and Surface Chemistry, Surfaces, Coatings and Films
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
36 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信