Trace and rare earth element systematics of cold-seep carbonates from the Krishna-Godavari basin: A comparison between isotopically distinct carbonate deposits
Muralidhar Kocherla , Durbar Ray , M. Satyanarayanan , H.M. João , Christo Sojan
{"title":"Trace and rare earth element systematics of cold-seep carbonates from the Krishna-Godavari basin: A comparison between isotopically distinct carbonate deposits","authors":"Muralidhar Kocherla , Durbar Ray , M. Satyanarayanan , H.M. João , Christo Sojan","doi":"10.1016/j.marchem.2024.104363","DOIUrl":null,"url":null,"abstract":"<div><p>Mineralogical and isotopically distinct authigenic carbonates from the zones of methane oxidation and methanogenesis in the cold-seep environment, from the Krishna-Godavari basin are investigated for major, trace, and rare earth element compositions. For this study, the elemental compositions of the <sup>13</sup>C-depleted carbonate phase (δ<sup>13</sup>C < −45‰) developed under the influence of anaerobic methane oxidation in the shallow parts (<115mbfs) of a sediment core, are compared with those in isotopically heavier siderite (δ<sup>13</sup>C > +5‰) from the zone of microbial methanogenesis at the deeper sediment depths (115-197mbfs). Results showed both types of cold-seep carbonate in two geochemical regimes have a comparable range of concentrations of redox-sensitive (e.g. V, Cr, Co, Ni, Zn) and refractory elements (e.g. Sc, Cs, Ga, Zr, Hf, Ta, Th), indicating limited impacts of mineralogy and their genetic processes on the distribution of these elements. In contrast, the degree of enrichments of elements like Si, Al, Sr, Y, HREE, and U in those isotopically discrete seep carbonates were distinctly different. Such compositional variability in two types of authigenic carbonates is described in terms of their diverse formation mechanisms, mineralogical controls, and variable contributions of terrigenous materials.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"259 ","pages":"Article 104363"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420324000148","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mineralogical and isotopically distinct authigenic carbonates from the zones of methane oxidation and methanogenesis in the cold-seep environment, from the Krishna-Godavari basin are investigated for major, trace, and rare earth element compositions. For this study, the elemental compositions of the 13C-depleted carbonate phase (δ13C < −45‰) developed under the influence of anaerobic methane oxidation in the shallow parts (<115mbfs) of a sediment core, are compared with those in isotopically heavier siderite (δ13C > +5‰) from the zone of microbial methanogenesis at the deeper sediment depths (115-197mbfs). Results showed both types of cold-seep carbonate in two geochemical regimes have a comparable range of concentrations of redox-sensitive (e.g. V, Cr, Co, Ni, Zn) and refractory elements (e.g. Sc, Cs, Ga, Zr, Hf, Ta, Th), indicating limited impacts of mineralogy and their genetic processes on the distribution of these elements. In contrast, the degree of enrichments of elements like Si, Al, Sr, Y, HREE, and U in those isotopically discrete seep carbonates were distinctly different. Such compositional variability in two types of authigenic carbonates is described in terms of their diverse formation mechanisms, mineralogical controls, and variable contributions of terrigenous materials.
期刊介绍:
Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.