Investigating Moderation Effects at the Within-Person Level Using Intensive Longitudinal Data: A Two-Level Dynamic Structural Equation Modelling Approach in Mplus.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Multivariate Behavioral Research Pub Date : 2024-05-01 Epub Date: 2024-02-14 DOI:10.1080/00273171.2023.2288575
Lydia Gabriela Speyer, Aja Louise Murray, Rogier Kievit
{"title":"Investigating Moderation Effects at the Within-Person Level Using Intensive Longitudinal Data: A Two-Level Dynamic Structural Equation Modelling Approach in Mplus.","authors":"Lydia Gabriela Speyer, Aja Louise Murray, Rogier Kievit","doi":"10.1080/00273171.2023.2288575","DOIUrl":null,"url":null,"abstract":"<p><p>Recent technological advances have provided new opportunities for the collection of intensive longitudinal data. Using methods such as dynamic structural equation modeling, these data can provide new insights into moment-to-moment dynamics of psychological and behavioral processes. In intensive longitudinal data (<i>t</i> > 20), researchers often have theories that imply that factors that change from moment to moment within individuals act as moderators. For instance, a person's level of sleep deprivation may affect how much an external stressor affects mood. Here, we describe how researchers can implement, test, and interpret dynamically changing within-person moderation effects using two-level dynamic structural equation modeling as implemented in the structural equation modeling software Mplus. We illustrate the analysis of within-person moderation effects using an empirical example investigating whether changes in spending time online using social media affect the moment-to-moment effect of loneliness on depressive symptoms, and highlight avenues for future methodological development. We provide annotated Mplus code, enabling researchers to better isolate, estimate, and interpret the complexities of within-person interaction effects.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"620-637"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2288575","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent technological advances have provided new opportunities for the collection of intensive longitudinal data. Using methods such as dynamic structural equation modeling, these data can provide new insights into moment-to-moment dynamics of psychological and behavioral processes. In intensive longitudinal data (t > 20), researchers often have theories that imply that factors that change from moment to moment within individuals act as moderators. For instance, a person's level of sleep deprivation may affect how much an external stressor affects mood. Here, we describe how researchers can implement, test, and interpret dynamically changing within-person moderation effects using two-level dynamic structural equation modeling as implemented in the structural equation modeling software Mplus. We illustrate the analysis of within-person moderation effects using an empirical example investigating whether changes in spending time online using social media affect the moment-to-moment effect of loneliness on depressive symptoms, and highlight avenues for future methodological development. We provide annotated Mplus code, enabling researchers to better isolate, estimate, and interpret the complexities of within-person interaction effects.

利用密集纵向数据调查人内水平的调节效应:Mplus 中的两级动态结构方程建模方法》(A Two-Level Dynamic Structural Equation Modelling Approach in Mplus)。
最近的技术进步为收集大量纵向数据提供了新的机会。利用动态结构方程建模等方法,这些数据可以为心理和行为过程的瞬间动态变化提供新的见解。在密集纵向数据(t > 20)中,研究人员通常会提出一些理论,暗示个体内部不同时刻发生变化的因素起着调节作用。例如,一个人的睡眠不足程度可能会影响外部压力对情绪的影响程度。在此,我们将介绍研究人员如何利用结构方程建模软件 Mplus 中的两级动态结构方程模型来实现、测试和解释动态变化的人内调节效应。我们通过一个实证例子来说明人内调节效应的分析,该例子调查了使用社交媒体上网时间的变化是否会影响孤独感对抑郁症状的瞬间效应,并强调了未来方法论发展的途径。我们提供了带注释的 Mplus 代码,使研究人员能够更好地分离、估计和解释复杂的人际互动效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信