The built-in selection bias of hazard ratios formalized using structural causal models.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2024-04-01 Epub Date: 2024-02-15 DOI:10.1007/s10985-024-09617-y
Richard A J Post, Edwin R van den Heuvel, Hein Putter
{"title":"The built-in selection bias of hazard ratios formalized using structural causal models.","authors":"Richard A J Post, Edwin R van den Heuvel, Hein Putter","doi":"10.1007/s10985-024-09617-y","DOIUrl":null,"url":null,"abstract":"<p><p>It is known that the hazard ratio lacks a useful causal interpretation. Even for data from a randomized controlled trial, the hazard ratio suffers from so-called built-in selection bias as, over time, the individuals at risk among the exposed and unexposed are no longer exchangeable. In this paper, we formalize how the expectation of the observed hazard ratio evolves and deviates from the causal effect of interest in the presence of heterogeneity of the hazard rate of unexposed individuals (frailty) and heterogeneity in effect (individual modification). For the case of effect heterogeneity, we define the causal hazard ratio. We show that the expected observed hazard ratio equals the ratio of expectations of the latent variables (frailty and modifier) conditionally on survival in the world with and without exposure, respectively. Examples with gamma, inverse Gaussian and compound Poisson distributed frailty and categorical (harming, beneficial or neutral) distributed effect modifiers are presented for illustration. This set of examples shows that an observed hazard ratio with a particular value can arise for all values of the causal hazard ratio. Therefore, the hazard ratio cannot be used as a measure of the causal effect without making untestable assumptions, stressing the importance of using more appropriate estimands, such as contrasts of the survival probabilities.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09617-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that the hazard ratio lacks a useful causal interpretation. Even for data from a randomized controlled trial, the hazard ratio suffers from so-called built-in selection bias as, over time, the individuals at risk among the exposed and unexposed are no longer exchangeable. In this paper, we formalize how the expectation of the observed hazard ratio evolves and deviates from the causal effect of interest in the presence of heterogeneity of the hazard rate of unexposed individuals (frailty) and heterogeneity in effect (individual modification). For the case of effect heterogeneity, we define the causal hazard ratio. We show that the expected observed hazard ratio equals the ratio of expectations of the latent variables (frailty and modifier) conditionally on survival in the world with and without exposure, respectively. Examples with gamma, inverse Gaussian and compound Poisson distributed frailty and categorical (harming, beneficial or neutral) distributed effect modifiers are presented for illustration. This set of examples shows that an observed hazard ratio with a particular value can arise for all values of the causal hazard ratio. Therefore, the hazard ratio cannot be used as a measure of the causal effect without making untestable assumptions, stressing the importance of using more appropriate estimands, such as contrasts of the survival probabilities.

Abstract Image

利用结构性因果模型对危险比的内在选择偏差进行正规化。
众所周知,危险比缺乏有用的因果解释。即使是来自随机对照试验的数据,危险比也存在所谓的内在选择偏差,因为随着时间的推移,暴露者和未暴露者中的风险个体不再具有可交换性。在本文中,我们正式阐述了在存在未暴露个体危险率的异质性(虚弱)和效应的异质性(个体修饰)的情况下,观察到的危险比的期望值是如何演变并偏离感兴趣的因果效应的。对于效应异质性,我们定义了因果危险比。我们证明,预期观察到的危害比等于潜变量(虚弱和修饰)分别对有暴露和无暴露情况下的生存条件的预期比。举例说明了伽马分布式、反高斯分布式和复合泊松分布式的虚弱和分类(有害、有益或中性)分布式的效应修饰因子。这组例子表明,具有特定值的观测危险比可能出现在所有的因果危险比值中。因此,如果不做出无法检验的假设,就不能使用危险比来衡量因果效应,这就强调了使用更合适的估计值(如生存概率对比)的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信