Richard A J Post, Edwin R van den Heuvel, Hein Putter
{"title":"The built-in selection bias of hazard ratios formalized using structural causal models.","authors":"Richard A J Post, Edwin R van den Heuvel, Hein Putter","doi":"10.1007/s10985-024-09617-y","DOIUrl":null,"url":null,"abstract":"<p><p>It is known that the hazard ratio lacks a useful causal interpretation. Even for data from a randomized controlled trial, the hazard ratio suffers from so-called built-in selection bias as, over time, the individuals at risk among the exposed and unexposed are no longer exchangeable. In this paper, we formalize how the expectation of the observed hazard ratio evolves and deviates from the causal effect of interest in the presence of heterogeneity of the hazard rate of unexposed individuals (frailty) and heterogeneity in effect (individual modification). For the case of effect heterogeneity, we define the causal hazard ratio. We show that the expected observed hazard ratio equals the ratio of expectations of the latent variables (frailty and modifier) conditionally on survival in the world with and without exposure, respectively. Examples with gamma, inverse Gaussian and compound Poisson distributed frailty and categorical (harming, beneficial or neutral) distributed effect modifiers are presented for illustration. This set of examples shows that an observed hazard ratio with a particular value can arise for all values of the causal hazard ratio. Therefore, the hazard ratio cannot be used as a measure of the causal effect without making untestable assumptions, stressing the importance of using more appropriate estimands, such as contrasts of the survival probabilities.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09617-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that the hazard ratio lacks a useful causal interpretation. Even for data from a randomized controlled trial, the hazard ratio suffers from so-called built-in selection bias as, over time, the individuals at risk among the exposed and unexposed are no longer exchangeable. In this paper, we formalize how the expectation of the observed hazard ratio evolves and deviates from the causal effect of interest in the presence of heterogeneity of the hazard rate of unexposed individuals (frailty) and heterogeneity in effect (individual modification). For the case of effect heterogeneity, we define the causal hazard ratio. We show that the expected observed hazard ratio equals the ratio of expectations of the latent variables (frailty and modifier) conditionally on survival in the world with and without exposure, respectively. Examples with gamma, inverse Gaussian and compound Poisson distributed frailty and categorical (harming, beneficial or neutral) distributed effect modifiers are presented for illustration. This set of examples shows that an observed hazard ratio with a particular value can arise for all values of the causal hazard ratio. Therefore, the hazard ratio cannot be used as a measure of the causal effect without making untestable assumptions, stressing the importance of using more appropriate estimands, such as contrasts of the survival probabilities.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.