Jie Zhang, Zhaochang Wu, Ben Dong, Sijie Ge, Shilong He
{"title":"Effective degradation of quinoline by catalytic ozonation with MnCe<sub>x</sub>O<sub>y</sub> catalysts: performance and mechanism.","authors":"Jie Zhang, Zhaochang Wu, Ben Dong, Sijie Ge, Shilong He","doi":"10.2166/wst.2024.027","DOIUrl":null,"url":null,"abstract":"<p><p>Quinoline inevitably remains in the effluent of coking wastewater treatment plants due to its bio-refractory nature, which might cause unfavorable effects on human and ecological environments. In this study, MnCe<sub>x</sub>O<sub>y</sub> was consciously synthesized by α-MnO<sub>2</sub> doped with Ce<sup>3+</sup> (Ce:Mn = 1:10) and employed as the ozonation catalyst for quinoline degradation. After that, the removal efficiency and mechanism of quinoline were systematically analyzed by characterizing the physicochemical properties of MnCe<sub>x</sub>O<sub>y</sub>, investigating free radicals and monitoring the solution pH. Results indicated that the removal rate of quinoline was greatly improved by the prepared MnCe<sub>x</sub>O<sub>y</sub> catalyst. Specifically, the removal efficiencies of quinoline could be 93.73, 62.57 and 43.76%, corresponding to MnCe<sub>x</sub>O<sub>y</sub>, α-MnO<sub>2</sub> and single ozonation systems, respectively. The radical scavenging tests demonstrated that <sup>•</sup>OH and <sup>•</sup>O<sub>2</sub><sup>-</sup> were the dominant reactive oxygen species in the MnCe<sub>x</sub>O<sub>y</sub> ozonation system. Meanwhile, the contribution levels of <sup>•</sup>OH and <sup>•</sup>O<sub>2</sub><sup>-</sup> to quinoline degradation were about 42 and 35%, respectively. The abundant surface hydroxyl groups and oxygen vacancies of the MnCe<sub>x</sub>O<sub>y</sub> catalyst were two important factors for decomposing molecular O<sub>3</sub> into more <sup>•</sup>OH and <sup>•</sup>O<sub>2</sub><sup>-</sup>. This study could provide scientific support for the application of the MnCe<sub>x</sub>O<sub>y</sub>/O<sub>3</sub> system in degrading quinoline in bio-treated coking wastewater.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"89 3","pages":"823-837"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.027","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quinoline inevitably remains in the effluent of coking wastewater treatment plants due to its bio-refractory nature, which might cause unfavorable effects on human and ecological environments. In this study, MnCexOy was consciously synthesized by α-MnO2 doped with Ce3+ (Ce:Mn = 1:10) and employed as the ozonation catalyst for quinoline degradation. After that, the removal efficiency and mechanism of quinoline were systematically analyzed by characterizing the physicochemical properties of MnCexOy, investigating free radicals and monitoring the solution pH. Results indicated that the removal rate of quinoline was greatly improved by the prepared MnCexOy catalyst. Specifically, the removal efficiencies of quinoline could be 93.73, 62.57 and 43.76%, corresponding to MnCexOy, α-MnO2 and single ozonation systems, respectively. The radical scavenging tests demonstrated that •OH and •O2- were the dominant reactive oxygen species in the MnCexOy ozonation system. Meanwhile, the contribution levels of •OH and •O2- to quinoline degradation were about 42 and 35%, respectively. The abundant surface hydroxyl groups and oxygen vacancies of the MnCexOy catalyst were two important factors for decomposing molecular O3 into more •OH and •O2-. This study could provide scientific support for the application of the MnCexOy/O3 system in degrading quinoline in bio-treated coking wastewater.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.