Identification and expression analysis of SBP-Box-like (SPL) gene family disclose their contribution to abiotic stress and flower budding in pigeon pea (Cajanus cajan).

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tayyaba Shaheen, Abdul Rehman, Amany H A Abeed, Muhammad Waqas, Asad Aslam, Farrukh Azeem, Muhammad Qasim, Muhammad Afzal, Muhammad Farooq Azhar, Kotb A Attia, Asmaa M Abushady, Sezai Ercisli, Nazia Nahid
{"title":"Identification and expression analysis of SBP-Box-like (<i>SPL</i>) gene family disclose their contribution to abiotic stress and flower budding in pigeon pea (<i>Cajanus cajan</i>).","authors":"Tayyaba Shaheen, Abdul Rehman, Amany H A Abeed, Muhammad Waqas, Asad Aslam, Farrukh Azeem, Muhammad Qasim, Muhammad Afzal, Muhammad Farooq Azhar, Kotb A Attia, Asmaa M Abushady, Sezai Ercisli, Nazia Nahid","doi":"10.1071/FP23237","DOIUrl":null,"url":null,"abstract":"<p><p>The SPL gene family (for Squamosa Promoter-binding like Proteins) represents specific transcription factors that have significant roles in abiotic stress tolerance, development and the growth processes of different plants, including initiation of the leaf, branching and development of shoot and fruits. The SPL gene family has been studied in different plant species; however, its role is not yet fully explored in pigeon pea (Cajanus cajan ). In the present study, 11 members of the CcSPL gene family were identified in C. cajan . The identified SPLs were classified into nine groups based on a phylogenetic analysis involving SPL protein sequences from C. cajan , Arabidopsis thaliana , Cicer arietinum , Glycine max , Phaseolus vulgaris , Vigna unguiculata and Arachis hypogaea . Further, the identification of gene structure, motif analysis, domain analysis and presence of cis -regulatory elements in the SPL family members were studied. Based on RNA-sequencing data, gene expression analysis was performed, revealing that CcSPL2.1, 3 and 13A were significantly upregulated for salt-tolerance and CcSPL14 and 15 were upregulated in a salt-susceptible cultivar. Real-time qPCR validation indicated that CcSPL3, 4, 6 and 13A were upregulated under salt stress conditions. Therefore, molecular docking was performed against the proteins of two highly expressed genes (CcSPL3 and CcSPL14 ) with three ligands: abscisic acid, gibberellic acid and indole-3-acetic acid. Afterward, their binding affinity was obtained and three-dimensional structures were predicted. In the future, our study may open avenues for harnessing CcSPL genes in pigeon pea for enhanced abiotic stress resistance and developmental traits.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The SPL gene family (for Squamosa Promoter-binding like Proteins) represents specific transcription factors that have significant roles in abiotic stress tolerance, development and the growth processes of different plants, including initiation of the leaf, branching and development of shoot and fruits. The SPL gene family has been studied in different plant species; however, its role is not yet fully explored in pigeon pea (Cajanus cajan ). In the present study, 11 members of the CcSPL gene family were identified in C. cajan . The identified SPLs were classified into nine groups based on a phylogenetic analysis involving SPL protein sequences from C. cajan , Arabidopsis thaliana , Cicer arietinum , Glycine max , Phaseolus vulgaris , Vigna unguiculata and Arachis hypogaea . Further, the identification of gene structure, motif analysis, domain analysis and presence of cis -regulatory elements in the SPL family members were studied. Based on RNA-sequencing data, gene expression analysis was performed, revealing that CcSPL2.1, 3 and 13A were significantly upregulated for salt-tolerance and CcSPL14 and 15 were upregulated in a salt-susceptible cultivar. Real-time qPCR validation indicated that CcSPL3, 4, 6 and 13A were upregulated under salt stress conditions. Therefore, molecular docking was performed against the proteins of two highly expressed genes (CcSPL3 and CcSPL14 ) with three ligands: abscisic acid, gibberellic acid and indole-3-acetic acid. Afterward, their binding affinity was obtained and three-dimensional structures were predicted. In the future, our study may open avenues for harnessing CcSPL genes in pigeon pea for enhanced abiotic stress resistance and developmental traits.

SBP-Box-like (SPL) 基因家族的鉴定和表达分析揭示了它们对鸽子豆(Cajanus cajan)非生物胁迫和花芽萌发的贡献。
SPL 基因家族(Squamosa Promoter-binding like Proteins)代表着特定的转录因子,在不同植物的非生物胁迫耐受性、发育和生长过程(包括叶片的萌发、分枝以及芽和果实的发育)中发挥着重要作用。SPL 基因家族已在不同植物物种中进行了研究,但其在鸽子豆(Cajanus cajan)中的作用尚未得到充分探讨。本研究在 C. cajan 中鉴定了 11 个 CcSPL 基因家族成员。根据对 C. cajan、Arabidopsis thaliana、Cicer arietinum、Glycine max、Phaseolus vulgaris、Vigna unguiculata 和 Arachis hypogaea 的 SPL 蛋白序列进行的系统发育分析,将已鉴定的 SPL 分成九组。此外,还研究了 SPL 家族成员的基因结构鉴定、主题分析、结构域分析以及顺式调控元件的存在。根据 RNA 序列数据,进行了基因表达分析,结果表明 CcSPL2.1、3 和 13A 在耐盐栽培品种中显著上调,而 CcSPL14 和 15 在耐盐栽培品种中上调。实时 qPCR 验证表明,CcSPL3、4、6 和 13A 在盐胁迫条件下上调。因此,针对两个高表达基因(CcSPL3 和 CcSPL14)的蛋白质与三种配体(脱落酸、赤霉素和吲哚-3-乙酸)进行了分子对接。随后,研究人员获得了它们的结合亲和力,并预测了它们的三维结构。未来,我们的研究可能会为利用鸽子豌豆中的 CcSPL 基因增强非生物胁迫抗性和发育性状开辟道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信