Rapid single-shot parity spin readout in a silicon double quantum dot with fidelity exceeding 99%

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Kenta Takeda, Akito Noiri, Takashi Nakajima, Leon C. Camenzind, Takashi Kobayashi, Amir Sammak, Giordano Scappucci, Seigo Tarucha
{"title":"Rapid single-shot parity spin readout in a silicon double quantum dot with fidelity exceeding 99%","authors":"Kenta Takeda, Akito Noiri, Takashi Nakajima, Leon C. Camenzind, Takashi Kobayashi, Amir Sammak, Giordano Scappucci, Seigo Tarucha","doi":"10.1038/s41534-024-00813-0","DOIUrl":null,"url":null,"abstract":"<p>Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer owing to their compatibility with semiconductor manufacturing technologies. Recent experiments in this system have demonstrated crucial technologies, including high-fidelity quantum gates and multiqubit operation. However, the realization of a fault-tolerant quantum computer requires a high-fidelity spin measurement faster than decoherence. To address this challenge, we characterize and optimize the initialization and measurement procedures using the parity-mode Pauli spin blockade technique. Here, we demonstrate a rapid (with a duration of a few μs) and accurate (with &gt;99% fidelity) parity spin measurement in a silicon double quantum dot. These results represent a significant step forward toward implementing measurement-based quantum error correction in silicon.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"38 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00813-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer owing to their compatibility with semiconductor manufacturing technologies. Recent experiments in this system have demonstrated crucial technologies, including high-fidelity quantum gates and multiqubit operation. However, the realization of a fault-tolerant quantum computer requires a high-fidelity spin measurement faster than decoherence. To address this challenge, we characterize and optimize the initialization and measurement procedures using the parity-mode Pauli spin blockade technique. Here, we demonstrate a rapid (with a duration of a few μs) and accurate (with >99% fidelity) parity spin measurement in a silicon double quantum dot. These results represent a significant step forward toward implementing measurement-based quantum error correction in silicon.

Abstract Image

硅双量子点中的快速单次奇偶自旋读出,保真度超过 99
硅基自旋量子比特与半导体制造技术兼容,为实现可扩展量子计算机提供了潜在途径。该系统的最新实验展示了关键技术,包括高保真量子门和多量子比特操作。然而,容错量子计算机的实现需要比去相干更快的高保真自旋测量。为了应对这一挑战,我们利用奇偶模式保利自旋封锁技术对初始化和测量程序进行了描述和优化。在这里,我们展示了在硅双量子点中进行快速(持续时间为几微秒)和精确(保真度为 99%)的奇偶性自旋测量。这些成果标志着在硅中实现基于测量的量子纠错迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信