Pollution levels and potential ecological risks of trace elements in relation to bacterial community in surface water of shallow lakes in northern China before and after ecological water replenishment
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ling Zhang , Junhong Bai , Yujia Zhai , Kegang Zhang , Yaqi Wang , Ruoxuan Tang , Rong Xiao , Milko A. Jorquera
{"title":"Pollution levels and potential ecological risks of trace elements in relation to bacterial community in surface water of shallow lakes in northern China before and after ecological water replenishment","authors":"Ling Zhang , Junhong Bai , Yujia Zhai , Kegang Zhang , Yaqi Wang , Ruoxuan Tang , Rong Xiao , Milko A. Jorquera","doi":"10.1016/j.jconhyd.2024.104318","DOIUrl":null,"url":null,"abstract":"<div><p>Ecological water replenishment is a crucial and effective measure to improve the water quality and ecological function of lakes. However, the effects of ecological water replenishment on the pollution characteristics and ecological risks of trace elements and bacterial communities in lake surface water are still kept unclear. We investigated the pollution levels and potential ecological risks for trace elements, as well as variation of the bacterial community in surface water in the BYD lake before and after ecological water replenishment. Our results revealed that higher levels and pollution indexes (I<sub>geo</sub>) of trace metals (e.g., As, Cd, Co, Cu and Ni; <em>p</em> < 0.05) after ecological water replenishment were observed than before ecological water replenishment and their total potential ecological risk (∑RI) were increased. In contrast, the network complexity of these trace elements, including nodes, edges, average diameter, modularity, clustering coefficient and average pathlength showed a decrease after ecological water replenishment than before. The diversity (community richness, community diversity and phylogenetic diversity decreased) and community structure of the bacterial community in the surface water (<em>p</em> < 0.05) were greatly changed after ecological water replenishment than before, with the increase in heavy metal-resistant phylum (e.g., Acidobacteriota). Moreover, the concentration of trace elements and ∑RI were significantly correlated with the alpha diversity of bacterial community, as well as dissolved organic carbon (DOC) and ORP, after ecological water replenishment. The findings indicate that it is very necessary to continuously monitor trace metal pollution levels and heavy metal-resistant phylum and identify their potential pollution sources for water environment control and lake ecosystem health.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000226","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ecological water replenishment is a crucial and effective measure to improve the water quality and ecological function of lakes. However, the effects of ecological water replenishment on the pollution characteristics and ecological risks of trace elements and bacterial communities in lake surface water are still kept unclear. We investigated the pollution levels and potential ecological risks for trace elements, as well as variation of the bacterial community in surface water in the BYD lake before and after ecological water replenishment. Our results revealed that higher levels and pollution indexes (Igeo) of trace metals (e.g., As, Cd, Co, Cu and Ni; p < 0.05) after ecological water replenishment were observed than before ecological water replenishment and their total potential ecological risk (∑RI) were increased. In contrast, the network complexity of these trace elements, including nodes, edges, average diameter, modularity, clustering coefficient and average pathlength showed a decrease after ecological water replenishment than before. The diversity (community richness, community diversity and phylogenetic diversity decreased) and community structure of the bacterial community in the surface water (p < 0.05) were greatly changed after ecological water replenishment than before, with the increase in heavy metal-resistant phylum (e.g., Acidobacteriota). Moreover, the concentration of trace elements and ∑RI were significantly correlated with the alpha diversity of bacterial community, as well as dissolved organic carbon (DOC) and ORP, after ecological water replenishment. The findings indicate that it is very necessary to continuously monitor trace metal pollution levels and heavy metal-resistant phylum and identify their potential pollution sources for water environment control and lake ecosystem health.