On the maximal number of elements pairwise generating the finite alternating group

IF 0.9 2区 数学 Q2 MATHEMATICS
Francesco Fumagalli , Martino Garonzi , Pietro Gheri
{"title":"On the maximal number of elements pairwise generating the finite alternating group","authors":"Francesco Fumagalli ,&nbsp;Martino Garonzi ,&nbsp;Pietro Gheri","doi":"10.1016/j.jcta.2024.105870","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be the alternating group of degree <em>n</em>. Let <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the maximal size of a subset <em>S</em> of <em>G</em> such that <span><math><mo>〈</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo><mo>=</mo><mi>G</mi></math></span> whenever <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>S</mi></math></span> and <span><math><mi>x</mi><mo>≠</mo><mi>y</mi></math></span> and let <span><math><mi>σ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the minimal size of a family of proper subgroups of <em>G</em> whose union is <em>G</em>. We prove that, when <em>n</em> varies in the family of composite numbers, <span><math><mi>σ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>/</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> tends to 1 as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, we explicitly calculate <span><math><mi>σ</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>21</mn></math></span> congruent to 3 modulo 18.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"205 ","pages":"Article 105870"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000098/pdfft?md5=0f713e308f01065a0eed53c25b2ba78c&pid=1-s2.0-S0097316524000098-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000098","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be the alternating group of degree n. Let ω(G) be the maximal size of a subset S of G such that x,y=G whenever x,yS and xy and let σ(G) be the minimal size of a family of proper subgroups of G whose union is G. We prove that, when n varies in the family of composite numbers, σ(G)/ω(G) tends to 1 as n. Moreover, we explicitly calculate σ(An) for n21 congruent to 3 modulo 18.

关于成对生成有限交替群的元素的最大数目
设 G 是 n 阶交替群。设 ω(G) 是 G 的子集 S 的最大大小,当 x,y∈S 且 x≠y 时,使得〈x,y〉=G;设 σ(G) 是 G 的一族适当子群的最小大小,其联合是 G。我们证明,当 n 在合数族中变化时,σ(G)/ω(G) 随着 n→∞ 趋于 1。此外,我们还明确地计算了 n≥21 的 σ(An)与 3 的同余式 18 的同余式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信