Francesco Fumagalli , Martino Garonzi , Pietro Gheri
{"title":"On the maximal number of elements pairwise generating the finite alternating group","authors":"Francesco Fumagalli , Martino Garonzi , Pietro Gheri","doi":"10.1016/j.jcta.2024.105870","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be the alternating group of degree <em>n</em>. Let <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the maximal size of a subset <em>S</em> of <em>G</em> such that <span><math><mo>〈</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo><mo>=</mo><mi>G</mi></math></span> whenever <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>S</mi></math></span> and <span><math><mi>x</mi><mo>≠</mo><mi>y</mi></math></span> and let <span><math><mi>σ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the minimal size of a family of proper subgroups of <em>G</em> whose union is <em>G</em>. We prove that, when <em>n</em> varies in the family of composite numbers, <span><math><mi>σ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>/</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> tends to 1 as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, we explicitly calculate <span><math><mi>σ</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>21</mn></math></span> congruent to 3 modulo 18.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"205 ","pages":"Article 105870"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000098/pdfft?md5=0f713e308f01065a0eed53c25b2ba78c&pid=1-s2.0-S0097316524000098-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000098","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be the alternating group of degree n. Let be the maximal size of a subset S of G such that whenever and and let be the minimal size of a family of proper subgroups of G whose union is G. We prove that, when n varies in the family of composite numbers, tends to 1 as . Moreover, we explicitly calculate for congruent to 3 modulo 18.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.